Loading…

Comprehensive Dynamic Interaction Studies in Inverter-Penetrated Power Systems

In a renewable-energy-penetrated power system (RPPS), inverter-based resources (IBRs) pose serious challenges to power system stability due to their completely different dynamic characteristics compared with conventional generators; thus, it is necessary to study the dynamic interactions between IBR...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2024-05, Vol.17 (9), p.2235
Main Authors: Li, Fujian, Ma, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a renewable-energy-penetrated power system (RPPS), inverter-based resources (IBRs) pose serious challenges to power system stability due to their completely different dynamic characteristics compared with conventional generators; thus, it is necessary to study the dynamic interactions between IBRs and power systems. Although many research efforts have been dedicated to this topic from both power electronics and power system researchers, some research from the power electronics field treats the external power system as a voltage source with an impedance, therefore ignoring the dynamic characteristics of a power system, while most of the research from the power system field applies simulation-based methods, for which it is difficult to directly interpret the interaction mechanism of IBRs and external system dynamics. Thus, none of these studies can explore the accurate dynamic interaction mechanism between IBRs and power systems, leading to performance degradation of IBR-integrated power systems. Our study takes into account the dynamic characteristics of both IBRs and the external power system, resulting in the development of a new open-loop transfer function for RPPSs. Based on this formulation, it is observed that under certain operating conditions, the dynamic interactions between the inverter and the power system help enhance IBR-penetrated power system stability compared with the case for which the external power system is controlled as a voltage source. The study also reveals how the inverter (phase-locked loop, control parameters, etc.), external power system (network strength) and penetration ratio in an IBR-penetrated power system affect the dynamic interactions between IBRs and the external power system using the proposed quantified interaction indices.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17092235