Loading…
Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors
Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The gr...
Saved in:
Published in: | Advanced science 2019-04, Vol.6 (7), p.1802251-n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5293-f22f91880dc2110175a77ce1374304956394a5c40abc0214f40095b0f5b69add3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5293-f22f91880dc2110175a77ce1374304956394a5c40abc0214f40095b0f5b69add3 |
container_end_page | n/a |
container_issue | 7 |
container_start_page | 1802251 |
container_title | Advanced science |
container_volume | 6 |
creator | Manjakkal, Libu Navaraj, William Taube Núñez, Carlos García Dahiya, Ravinder |
description | Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The graphene–graphite polyurethane (GPU) composite based SCs have maximum energy and power densities of 10.22 µWh cm−2 and 11.15 mW cm−2, respectively, at a current density of 10 mA cm−2 and operating voltage of 2.25 V (considering the IR drop). The significant gain in the performance of SCs is due to excellent electroactive surface per unit area (surface roughness 97.6 nm) of GPU composite and high electrical conductivity (0.318 S cm−1). The fabricated SCs show stable response for more than 15 000 charging/discharging cycles at current densities of 10 mA cm−2 and operating voltage of 2.5 V (without considering the IR drop). The developed SCs are tested as energy storage devices for wide applications, namely: a) solar‐powered energy‐packs to operate 84 light‐emitting diodes (LEDs) for more than a minute and to drive the actuators of a prosthetic limb; b) powering high‐torque motors; and c) wristband for wearable sensors.
A graphene–graphite polyurethane resin composite based flexible supercapacitor shows excellent electrochemical and supercapacitive performance. The graphite‐polyurethane composite offers increased electroactive surface per unit area, less hydrophobicity, and excellent surface charge distribution. The supercapacitor, with excellent capacitance (15 mF cm–2), operating voltage (≈2.25 V), and high energy and power densities (10.22 μW h cm–2 and 11.15 mW cm–2 respectively), is shown to have applications in wearable systems, robotics, and prosthetics. |
doi_str_mv | 10.1002/advs.201802251 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_424dc756d5eb48fda14c000477228f27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_424dc756d5eb48fda14c000477228f27</doaj_id><sourcerecordid>2260865572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5293-f22f91880dc2110175a77ce1374304956394a5c40abc0214f40095b0f5b69add3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXplSOKxIXLbsdfiX1BKttPqRJIBa6WY092s8rGwU4Ke-tPQOIf9pfU2y2rlgsnj2Yev555PVn2lsCUANAj427ilAKRQKkgL7J9SpScMMn5yyfxXnYY4xIAiGAlJ_J1tsdASQWM72f6PJh-gR3e3f55CJsB8y--XY8Bh4XpMJ_5Ve_jJv3JRHT5RTNf3N3-Pu0wzNf5CXapts7PWvzVVC3m12OPwZre2GbwIb7JXtWmjXj4eB5k385Ov84uJlefzy9nx1cTK6hik5rSWhEpwVlKCJBSmLK0SFLDDLgSBVPcCMvBVBYo4TUHUKKCWlSFMs6xg-xyq-u8Weo-NCsT1tqbRj8kfJhrE4bGtqg55c6WonACKy5rZwi3yR1elpTKmpZJ6-NWqx-rFTqL3RBM-0z0eaVrFnrub3TBeSGUTAIfHgWC_zFiHPSqiRbbNvnpx6gpJUDTVGzz1vt_0KUfQ5esSlQBshCipImabikbfIwB610zBPRmFfRmFfRuFdKFd09H2OF_Pz4BfAv8bFpc_0dOH598v055xu4BhOTAkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260865572</pqid></control><display><type>article</type><title>Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>PubMed Central Free</source><source>ProQuest Publicly Available Content database</source><creator>Manjakkal, Libu ; Navaraj, William Taube ; Núñez, Carlos García ; Dahiya, Ravinder</creator><creatorcontrib>Manjakkal, Libu ; Navaraj, William Taube ; Núñez, Carlos García ; Dahiya, Ravinder</creatorcontrib><description>Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The graphene–graphite polyurethane (GPU) composite based SCs have maximum energy and power densities of 10.22 µWh cm−2 and 11.15 mW cm−2, respectively, at a current density of 10 mA cm−2 and operating voltage of 2.25 V (considering the IR drop). The significant gain in the performance of SCs is due to excellent electroactive surface per unit area (surface roughness 97.6 nm) of GPU composite and high electrical conductivity (0.318 S cm−1). The fabricated SCs show stable response for more than 15 000 charging/discharging cycles at current densities of 10 mA cm−2 and operating voltage of 2.5 V (without considering the IR drop). The developed SCs are tested as energy storage devices for wide applications, namely: a) solar‐powered energy‐packs to operate 84 light‐emitting diodes (LEDs) for more than a minute and to drive the actuators of a prosthetic limb; b) powering high‐torque motors; and c) wristband for wearable sensors.
A graphene–graphite polyurethane resin composite based flexible supercapacitor shows excellent electrochemical and supercapacitive performance. The graphite‐polyurethane composite offers increased electroactive surface per unit area, less hydrophobicity, and excellent surface charge distribution. The supercapacitor, with excellent capacitance (15 mF cm–2), operating voltage (≈2.25 V), and high energy and power densities (10.22 μW h cm–2 and 11.15 mW cm–2 respectively), is shown to have applications in wearable systems, robotics, and prosthetics.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.201802251</identifier><identifier>PMID: 30989034</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Carbon ; Composite materials ; Contact angle ; Electrodes ; Electrolytes ; Energy ; energy autonomy ; flexible supercapacitors ; Graphene ; Graphite ; Morphology ; Nanostructured materials ; photovoltaic cells ; Scanning electron microscopy ; wearable systems</subject><ispartof>Advanced science, 2019-04, Vol.6 (7), p.1802251-n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5293-f22f91880dc2110175a77ce1374304956394a5c40abc0214f40095b0f5b69add3</citedby><cites>FETCH-LOGICAL-c5293-f22f91880dc2110175a77ce1374304956394a5c40abc0214f40095b0f5b69add3</cites><orcidid>0000-0002-3858-3841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2260865572/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2260865572?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30989034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manjakkal, Libu</creatorcontrib><creatorcontrib>Navaraj, William Taube</creatorcontrib><creatorcontrib>Núñez, Carlos García</creatorcontrib><creatorcontrib>Dahiya, Ravinder</creatorcontrib><title>Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The graphene–graphite polyurethane (GPU) composite based SCs have maximum energy and power densities of 10.22 µWh cm−2 and 11.15 mW cm−2, respectively, at a current density of 10 mA cm−2 and operating voltage of 2.25 V (considering the IR drop). The significant gain in the performance of SCs is due to excellent electroactive surface per unit area (surface roughness 97.6 nm) of GPU composite and high electrical conductivity (0.318 S cm−1). The fabricated SCs show stable response for more than 15 000 charging/discharging cycles at current densities of 10 mA cm−2 and operating voltage of 2.5 V (without considering the IR drop). The developed SCs are tested as energy storage devices for wide applications, namely: a) solar‐powered energy‐packs to operate 84 light‐emitting diodes (LEDs) for more than a minute and to drive the actuators of a prosthetic limb; b) powering high‐torque motors; and c) wristband for wearable sensors.
A graphene–graphite polyurethane resin composite based flexible supercapacitor shows excellent electrochemical and supercapacitive performance. The graphite‐polyurethane composite offers increased electroactive surface per unit area, less hydrophobicity, and excellent surface charge distribution. The supercapacitor, with excellent capacitance (15 mF cm–2), operating voltage (≈2.25 V), and high energy and power densities (10.22 μW h cm–2 and 11.15 mW cm–2 respectively), is shown to have applications in wearable systems, robotics, and prosthetics.</description><subject>Carbon</subject><subject>Composite materials</subject><subject>Contact angle</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>energy autonomy</subject><subject>flexible supercapacitors</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Morphology</subject><subject>Nanostructured materials</subject><subject>photovoltaic cells</subject><subject>Scanning electron microscopy</subject><subject>wearable systems</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1v1DAQhiMEolXplSOKxIXLbsdfiX1BKttPqRJIBa6WY092s8rGwU4Ke-tPQOIf9pfU2y2rlgsnj2Yev555PVn2lsCUANAj427ilAKRQKkgL7J9SpScMMn5yyfxXnYY4xIAiGAlJ_J1tsdASQWM72f6PJh-gR3e3f55CJsB8y--XY8Bh4XpMJ_5Ve_jJv3JRHT5RTNf3N3-Pu0wzNf5CXapts7PWvzVVC3m12OPwZre2GbwIb7JXtWmjXj4eB5k385Ov84uJlefzy9nx1cTK6hik5rSWhEpwVlKCJBSmLK0SFLDDLgSBVPcCMvBVBYo4TUHUKKCWlSFMs6xg-xyq-u8Weo-NCsT1tqbRj8kfJhrE4bGtqg55c6WonACKy5rZwi3yR1elpTKmpZJ6-NWqx-rFTqL3RBM-0z0eaVrFnrub3TBeSGUTAIfHgWC_zFiHPSqiRbbNvnpx6gpJUDTVGzz1vt_0KUfQ5esSlQBshCipImabikbfIwB610zBPRmFfRmFfRuFdKFd09H2OF_Pz4BfAv8bFpc_0dOH598v055xu4BhOTAkg</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Manjakkal, Libu</creator><creator>Navaraj, William Taube</creator><creator>Núñez, Carlos García</creator><creator>Dahiya, Ravinder</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3858-3841</orcidid></search><sort><creationdate>20190403</creationdate><title>Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors</title><author>Manjakkal, Libu ; Navaraj, William Taube ; Núñez, Carlos García ; Dahiya, Ravinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5293-f22f91880dc2110175a77ce1374304956394a5c40abc0214f40095b0f5b69add3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Composite materials</topic><topic>Contact angle</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>energy autonomy</topic><topic>flexible supercapacitors</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Morphology</topic><topic>Nanostructured materials</topic><topic>photovoltaic cells</topic><topic>Scanning electron microscopy</topic><topic>wearable systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manjakkal, Libu</creatorcontrib><creatorcontrib>Navaraj, William Taube</creatorcontrib><creatorcontrib>Núñez, Carlos García</creatorcontrib><creatorcontrib>Dahiya, Ravinder</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library website</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manjakkal, Libu</au><au>Navaraj, William Taube</au><au>Núñez, Carlos García</au><au>Dahiya, Ravinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>6</volume><issue>7</issue><spage>1802251</spage><epage>n/a</epage><pages>1802251-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The graphene–graphite polyurethane (GPU) composite based SCs have maximum energy and power densities of 10.22 µWh cm−2 and 11.15 mW cm−2, respectively, at a current density of 10 mA cm−2 and operating voltage of 2.25 V (considering the IR drop). The significant gain in the performance of SCs is due to excellent electroactive surface per unit area (surface roughness 97.6 nm) of GPU composite and high electrical conductivity (0.318 S cm−1). The fabricated SCs show stable response for more than 15 000 charging/discharging cycles at current densities of 10 mA cm−2 and operating voltage of 2.5 V (without considering the IR drop). The developed SCs are tested as energy storage devices for wide applications, namely: a) solar‐powered energy‐packs to operate 84 light‐emitting diodes (LEDs) for more than a minute and to drive the actuators of a prosthetic limb; b) powering high‐torque motors; and c) wristband for wearable sensors.
A graphene–graphite polyurethane resin composite based flexible supercapacitor shows excellent electrochemical and supercapacitive performance. The graphite‐polyurethane composite offers increased electroactive surface per unit area, less hydrophobicity, and excellent surface charge distribution. The supercapacitor, with excellent capacitance (15 mF cm–2), operating voltage (≈2.25 V), and high energy and power densities (10.22 μW h cm–2 and 11.15 mW cm–2 respectively), is shown to have applications in wearable systems, robotics, and prosthetics.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>30989034</pmid><doi>10.1002/advs.201802251</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3858-3841</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2019-04, Vol.6 (7), p.1802251-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_424dc756d5eb48fda14c000477228f27 |
source | Open Access: Wiley-Blackwell Open Access Journals; PubMed Central Free; ProQuest Publicly Available Content database |
subjects | Carbon Composite materials Contact angle Electrodes Electrolytes Energy energy autonomy flexible supercapacitors Graphene Graphite Morphology Nanostructured materials photovoltaic cells Scanning electron microscopy wearable systems |
title | Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%E2%80%93Graphite%20Polyurethane%20Composite%20Based%20High%E2%80%90Energy%20Density%20Flexible%20Supercapacitors&rft.jtitle=Advanced%20science&rft.au=Manjakkal,%20Libu&rft.date=2019-04-03&rft.volume=6&rft.issue=7&rft.spage=1802251&rft.epage=n/a&rft.pages=1802251-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.201802251&rft_dat=%3Cproquest_doaj_%3E2260865572%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5293-f22f91880dc2110175a77ce1374304956394a5c40abc0214f40095b0f5b69add3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260865572&rft_id=info:pmid/30989034&rfr_iscdi=true |