Loading…

Spatially explicit seston depletion index to optimize shellfish culture

Cultivated bivalves rely on natural seston for growth and metabolic processes. Because seston is a limited resource, there is a need to better understand its distribution and fluxes within culture embayments, so farms can be positioned optimally within these dynamic systems. In this study, a simple...

Full description

Saved in:
Bibliographic Details
Published in:Aquaculture Environment Interactions 2013-08, Vol.4 (2), p.175-186
Main Authors: Guyondet, T., Sonier, R., Comeau, L. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cultivated bivalves rely on natural seston for growth and metabolic processes. Because seston is a limited resource, there is a need to better understand its distribution and fluxes within culture embayments, so farms can be positioned optimally within these dynamic systems. In this study, a simple numerical tool was developed and implemented to address actual management issues related to the positioning of oyster Crassostrea virginica farms in the Richibucto Estuary (eastern Canada). The versatile procedure relied on hydrodynamic modelling and tracer advection−dispersion to reproduce the spatial and temporal dynamics of seston availability. The model identified 3 areas of interest within the estuary, each with unique water renewal rates and seston concentrations. The method also revealed major interactions between the different areas, and proved efficient in quantifying the effects of topographical alterations on seston availability. Our results suggest that such basic modelling tools produce relevant information in a timely manner, and thereby facilitate the necessary dialogue between science advisors, industry stakeholders and resource managers.
ISSN:1869-215X
1869-7534
DOI:10.3354/aei00083