Loading…
Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges
In the era of big data, the explosive growth of Earth observation data and the rapid advancement in cloud computing technology make the global-oriented spatiotemporal data simulation possible. These dual developments also provide advantageous conditions for discrete global grid systems (DGGS). DGGS...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-01, Vol.12 (1), p.62 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-44bb46fb3b510f79fd0976103935c7c07264a1df31d22287f5f219187e701fa23 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-44bb46fb3b510f79fd0976103935c7c07264a1df31d22287f5f219187e701fa23 |
container_end_page | |
container_issue | 1 |
container_start_page | 62 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 12 |
creator | Yao, Xiaochuang Li, Guoqing Xia, Junshi Ben, Jin Cao, Qianqian Zhao, Long Ma, Yue Zhang, Lianchong Zhu, Dehai |
description | In the era of big data, the explosive growth of Earth observation data and the rapid advancement in cloud computing technology make the global-oriented spatiotemporal data simulation possible. These dual developments also provide advantageous conditions for discrete global grid systems (DGGS). DGGS are designed to portray real-world phenomena by providing a spatiotemporal unified framework on a standard discrete geospatial data structure and theoretical support to address the challenges from big data storage, processing, and analysis to visualization and data sharing. In this paper, the trinity of big Earth observation data (BEOD), cloud computing, and DGGS is proposed, and based on this trinity theory, we explore the opportunities and challenges to handle BEOD from two aspects, namely, information technology and unified data framework. Our focus is on how cloud computing and DGGS can provide an excellent solution to enable big Earth observation data. Firstly, we describe the current status and data characteristics of Earth observation data, which indicate the arrival of the era of big data in the Earth observation domain. Subsequently, we review the cloud computing technology and DGGS framework, especially the works and contributions made in the field of BEOD, including spatial cloud computing, mainstream big data platform, DGGS standards, data models, and applications. From the aforementioned views of the general introduction, the research opportunities and challenges are enumerated and discussed, including EO data management, data fusion, and grid encoding, which are concerned with analysis models and processing performance of big Earth observation data with discrete global grid systems in the cloud environment. |
doi_str_mv | 10.3390/rs12010062 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4279fef202da4624963cde6795a56b2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4279fef202da4624963cde6795a56b2a</doaj_id><sourcerecordid>2550318351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-44bb46fb3b510f79fd0976103935c7c07264a1df31d22287f5f219187e701fa23</originalsourceid><addsrcrecordid>eNpNUcFKxDAQLaKg6F78goA3YTWZpOnGm9Z1FYQ9qOcwbZPdLN2mJqng31t3RZ3LDI83b-bxsuyc0SvOFb0OkQFllEo4yE6AFjAVoODw33ycTWLc0LE4Z4qKk6yad1i1rluRtDbkzq3IHENak2UVTfjA5HxH7jEh-XBIytYPDSn9th_S9wp2DblfLF5uyLLvfUhD55IzcYeXa2xb061MPMuOLLbRTH76afb2MH8tH6fPy8VTefs8rblkaSpEVQlpK17ljNpC2YaqQjLKFc_roh4tSIGssZw1ADArbG6BKTYrTEGZReCn2dNet_G40X1wWwyf2qPTO8CHlR6tubo1WsCobyxQaFBIEEryujGyUDnmsgIctS72Wn3w74OJSW_8ELrxfQ15Tjmb8ZyNrMs9qw4-xmDs71VG9Xck-i8S_gWsoHs4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550318351</pqid></control><display><type>article</type><title>Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges</title><source>Publicly Available Content Database</source><creator>Yao, Xiaochuang ; Li, Guoqing ; Xia, Junshi ; Ben, Jin ; Cao, Qianqian ; Zhao, Long ; Ma, Yue ; Zhang, Lianchong ; Zhu, Dehai</creator><creatorcontrib>Yao, Xiaochuang ; Li, Guoqing ; Xia, Junshi ; Ben, Jin ; Cao, Qianqian ; Zhao, Long ; Ma, Yue ; Zhang, Lianchong ; Zhu, Dehai</creatorcontrib><description>In the era of big data, the explosive growth of Earth observation data and the rapid advancement in cloud computing technology make the global-oriented spatiotemporal data simulation possible. These dual developments also provide advantageous conditions for discrete global grid systems (DGGS). DGGS are designed to portray real-world phenomena by providing a spatiotemporal unified framework on a standard discrete geospatial data structure and theoretical support to address the challenges from big data storage, processing, and analysis to visualization and data sharing. In this paper, the trinity of big Earth observation data (BEOD), cloud computing, and DGGS is proposed, and based on this trinity theory, we explore the opportunities and challenges to handle BEOD from two aspects, namely, information technology and unified data framework. Our focus is on how cloud computing and DGGS can provide an excellent solution to enable big Earth observation data. Firstly, we describe the current status and data characteristics of Earth observation data, which indicate the arrival of the era of big data in the Earth observation domain. Subsequently, we review the cloud computing technology and DGGS framework, especially the works and contributions made in the field of BEOD, including spatial cloud computing, mainstream big data platform, DGGS standards, data models, and applications. From the aforementioned views of the general introduction, the research opportunities and challenges are enumerated and discussed, including EO data management, data fusion, and grid encoding, which are concerned with analysis models and processing performance of big Earth observation data with discrete global grid systems in the cloud environment.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs12010062</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Archives & records ; Big Data ; big earth observation data ; Cloud computing ; Data integration ; Data management ; Data processing ; Data retrieval ; Data simulation ; Data storage ; Data structures ; Datasets ; discrete global grid systems ; Earth ; Information technology ; Internet of Things ; Remote sensing ; Satellites ; Sensors ; Software services ; Spatial data ; Spatiotemporal data ; Time series</subject><ispartof>Remote sensing (Basel, Switzerland), 2020-01, Vol.12 (1), p.62</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-44bb46fb3b510f79fd0976103935c7c07264a1df31d22287f5f219187e701fa23</citedby><cites>FETCH-LOGICAL-c361t-44bb46fb3b510f79fd0976103935c7c07264a1df31d22287f5f219187e701fa23</cites><orcidid>0000-0001-7981-9155 ; 0000-0001-8068-9415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550318351/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550318351?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yao, Xiaochuang</creatorcontrib><creatorcontrib>Li, Guoqing</creatorcontrib><creatorcontrib>Xia, Junshi</creatorcontrib><creatorcontrib>Ben, Jin</creatorcontrib><creatorcontrib>Cao, Qianqian</creatorcontrib><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Zhang, Lianchong</creatorcontrib><creatorcontrib>Zhu, Dehai</creatorcontrib><title>Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges</title><title>Remote sensing (Basel, Switzerland)</title><description>In the era of big data, the explosive growth of Earth observation data and the rapid advancement in cloud computing technology make the global-oriented spatiotemporal data simulation possible. These dual developments also provide advantageous conditions for discrete global grid systems (DGGS). DGGS are designed to portray real-world phenomena by providing a spatiotemporal unified framework on a standard discrete geospatial data structure and theoretical support to address the challenges from big data storage, processing, and analysis to visualization and data sharing. In this paper, the trinity of big Earth observation data (BEOD), cloud computing, and DGGS is proposed, and based on this trinity theory, we explore the opportunities and challenges to handle BEOD from two aspects, namely, information technology and unified data framework. Our focus is on how cloud computing and DGGS can provide an excellent solution to enable big Earth observation data. Firstly, we describe the current status and data characteristics of Earth observation data, which indicate the arrival of the era of big data in the Earth observation domain. Subsequently, we review the cloud computing technology and DGGS framework, especially the works and contributions made in the field of BEOD, including spatial cloud computing, mainstream big data platform, DGGS standards, data models, and applications. From the aforementioned views of the general introduction, the research opportunities and challenges are enumerated and discussed, including EO data management, data fusion, and grid encoding, which are concerned with analysis models and processing performance of big Earth observation data with discrete global grid systems in the cloud environment.</description><subject>Algorithms</subject><subject>Archives & records</subject><subject>Big Data</subject><subject>big earth observation data</subject><subject>Cloud computing</subject><subject>Data integration</subject><subject>Data management</subject><subject>Data processing</subject><subject>Data retrieval</subject><subject>Data simulation</subject><subject>Data storage</subject><subject>Data structures</subject><subject>Datasets</subject><subject>discrete global grid systems</subject><subject>Earth</subject><subject>Information technology</subject><subject>Internet of Things</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Software services</subject><subject>Spatial data</subject><subject>Spatiotemporal data</subject><subject>Time series</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKxDAQLaKg6F78goA3YTWZpOnGm9Z1FYQ9qOcwbZPdLN2mJqng31t3RZ3LDI83b-bxsuyc0SvOFb0OkQFllEo4yE6AFjAVoODw33ycTWLc0LE4Z4qKk6yad1i1rluRtDbkzq3IHENak2UVTfjA5HxH7jEh-XBIytYPDSn9th_S9wp2DblfLF5uyLLvfUhD55IzcYeXa2xb061MPMuOLLbRTH76afb2MH8tH6fPy8VTefs8rblkaSpEVQlpK17ljNpC2YaqQjLKFc_roh4tSIGssZw1ADArbG6BKTYrTEGZReCn2dNet_G40X1wWwyf2qPTO8CHlR6tubo1WsCobyxQaFBIEEryujGyUDnmsgIctS72Wn3w74OJSW_8ELrxfQ15Tjmb8ZyNrMs9qw4-xmDs71VG9Xck-i8S_gWsoHs4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yao, Xiaochuang</creator><creator>Li, Guoqing</creator><creator>Xia, Junshi</creator><creator>Ben, Jin</creator><creator>Cao, Qianqian</creator><creator>Zhao, Long</creator><creator>Ma, Yue</creator><creator>Zhang, Lianchong</creator><creator>Zhu, Dehai</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7981-9155</orcidid><orcidid>https://orcid.org/0000-0001-8068-9415</orcidid></search><sort><creationdate>20200101</creationdate><title>Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges</title><author>Yao, Xiaochuang ; Li, Guoqing ; Xia, Junshi ; Ben, Jin ; Cao, Qianqian ; Zhao, Long ; Ma, Yue ; Zhang, Lianchong ; Zhu, Dehai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-44bb46fb3b510f79fd0976103935c7c07264a1df31d22287f5f219187e701fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Archives & records</topic><topic>Big Data</topic><topic>big earth observation data</topic><topic>Cloud computing</topic><topic>Data integration</topic><topic>Data management</topic><topic>Data processing</topic><topic>Data retrieval</topic><topic>Data simulation</topic><topic>Data storage</topic><topic>Data structures</topic><topic>Datasets</topic><topic>discrete global grid systems</topic><topic>Earth</topic><topic>Information technology</topic><topic>Internet of Things</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Software services</topic><topic>Spatial data</topic><topic>Spatiotemporal data</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xiaochuang</creatorcontrib><creatorcontrib>Li, Guoqing</creatorcontrib><creatorcontrib>Xia, Junshi</creatorcontrib><creatorcontrib>Ben, Jin</creatorcontrib><creatorcontrib>Cao, Qianqian</creatorcontrib><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Zhang, Lianchong</creatorcontrib><creatorcontrib>Zhu, Dehai</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Xiaochuang</au><au>Li, Guoqing</au><au>Xia, Junshi</au><au>Ben, Jin</au><au>Cao, Qianqian</au><au>Zhao, Long</au><au>Ma, Yue</au><au>Zhang, Lianchong</au><au>Zhu, Dehai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>62</spage><pages>62-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>In the era of big data, the explosive growth of Earth observation data and the rapid advancement in cloud computing technology make the global-oriented spatiotemporal data simulation possible. These dual developments also provide advantageous conditions for discrete global grid systems (DGGS). DGGS are designed to portray real-world phenomena by providing a spatiotemporal unified framework on a standard discrete geospatial data structure and theoretical support to address the challenges from big data storage, processing, and analysis to visualization and data sharing. In this paper, the trinity of big Earth observation data (BEOD), cloud computing, and DGGS is proposed, and based on this trinity theory, we explore the opportunities and challenges to handle BEOD from two aspects, namely, information technology and unified data framework. Our focus is on how cloud computing and DGGS can provide an excellent solution to enable big Earth observation data. Firstly, we describe the current status and data characteristics of Earth observation data, which indicate the arrival of the era of big data in the Earth observation domain. Subsequently, we review the cloud computing technology and DGGS framework, especially the works and contributions made in the field of BEOD, including spatial cloud computing, mainstream big data platform, DGGS standards, data models, and applications. From the aforementioned views of the general introduction, the research opportunities and challenges are enumerated and discussed, including EO data management, data fusion, and grid encoding, which are concerned with analysis models and processing performance of big Earth observation data with discrete global grid systems in the cloud environment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs12010062</doi><orcidid>https://orcid.org/0000-0001-7981-9155</orcidid><orcidid>https://orcid.org/0000-0001-8068-9415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2020-01, Vol.12 (1), p.62 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4279fef202da4624963cde6795a56b2a |
source | Publicly Available Content Database |
subjects | Algorithms Archives & records Big Data big earth observation data Cloud computing Data integration Data management Data processing Data retrieval Data simulation Data storage Data structures Datasets discrete global grid systems Earth Information technology Internet of Things Remote sensing Satellites Sensors Software services Spatial data Spatiotemporal data Time series |
title | Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20the%20Big%20Earth%20Observation%20Data%20via%20Cloud%20Computing%20and%20DGGS:%20Opportunities%20and%20Challenges&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Yao,%20Xiaochuang&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=62&rft.pages=62-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs12010062&rft_dat=%3Cproquest_doaj_%3E2550318351%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-44bb46fb3b510f79fd0976103935c7c07264a1df31d22287f5f219187e701fa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550318351&rft_id=info:pmid/&rfr_iscdi=true |