Loading…

Assessing Environmental Impact: Machine Learning for Crop Yield Prediction

Most agricultural crops have been badly affected by the effect of global climate change in India. In terms of their output over the past 20 years. It will allow policymakers and farmers to take effective marketing and storage steps to predict crop yields earlier in their harvest. This project will a...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2024, Vol.529, p.3008
Main Authors: Addu, Sowjanya, Sheelam, Srujana, Mekala, Samhitha, Sulthana, Nazma, Mekala, Lohitha, Alsalami, Zaid
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1578-9c2f19fa74b22d3f2ea97f02eb2819a4b6d96c2dbb157184834a735026244e6f3
container_end_page
container_issue
container_start_page 3008
container_title E3S web of conferences
container_volume 529
creator Addu, Sowjanya
Sheelam, Srujana
Mekala, Samhitha
Sulthana, Nazma
Mekala, Lohitha
Alsalami, Zaid
description Most agricultural crops have been badly affected by the effect of global climate change in India. In terms of their output over the past 20 years. It will allow policymakers and farmers to take effective marketing and storage steps to predict crop yields earlier in their harvest. This project will allow farmers to capture the yield of their crops before cultivation in the field of agriculture and thus help them make the necessary decisions. Implementation of such a method with web-based graphic software that is simple to use and the machine learning algorithm can then be distributed. This paper focuses mainly on predicting the yield of the crop by applying various machine-learning techniques. The classifier models used here include KNN, Decision Tree, Random Forest, and Voting Classifier. The prediction made by machine learning algorithms will help the farmers decide which crop to grow to induce the most yield by considering factors like temperature, rainfall, humidity, pH, etc. This bridges the gap between technology and the agriculture sector.
doi_str_mv 10.1051/e3sconf/202452903008
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4280d59f039c4a5fb6e04d7ad67eaed3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4280d59f039c4a5fb6e04d7ad67eaed3</doaj_id><sourcerecordid>oai_doaj_org_article_4280d59f039c4a5fb6e04d7ad67eaed3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1578-9c2f19fa74b22d3f2ea97f02eb2819a4b6d96c2dbb157184834a735026244e6f3</originalsourceid><addsrcrecordid>eNpNkMtKAzEYhYMoWGrfwMW8wNjkT-YSd6VUrVR0oQtX4Z9caso0Kckg-Pa2tkhX53A4fIuPkFtG7xit2NTyrGNwU6AgKpCUU9pekBFA3ZQMBFye9WsyyXlDKWVQtYKKEXme5Wxz9mFdLMK3TzFsbRiwL5bbHerhvnhB_eWDLVYWUzjcXEzFPMVd8eltb4q3ZI3Xg4_hhlw57LOdnHJMPh4W7_OncvX6uJzPVqVmVdOWUoNj0mEjOgDDHViUjaNgO2iZRNHVRtYaTNft76wVLRfY8IpCDULY2vExWR65JuJG7ZLfYvpREb36G2JaK0yD171VAlpqKukol1pg5braUmEaNHVj0Rq-Z4kjS6eYc7Lun8eoOuhVJ73qXC__BSQ8bnE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessing Environmental Impact: Machine Learning for Crop Yield Prediction</title><source>Publicly Available Content Database</source><creator>Addu, Sowjanya ; Sheelam, Srujana ; Mekala, Samhitha ; Sulthana, Nazma ; Mekala, Lohitha ; Alsalami, Zaid</creator><contributor>Sankar, B. ; Ramesh Kumar, D. ; Arunkumar, K. ; Swaminathan, P.</contributor><creatorcontrib>Addu, Sowjanya ; Sheelam, Srujana ; Mekala, Samhitha ; Sulthana, Nazma ; Mekala, Lohitha ; Alsalami, Zaid ; Sankar, B. ; Ramesh Kumar, D. ; Arunkumar, K. ; Swaminathan, P.</creatorcontrib><description>Most agricultural crops have been badly affected by the effect of global climate change in India. In terms of their output over the past 20 years. It will allow policymakers and farmers to take effective marketing and storage steps to predict crop yields earlier in their harvest. This project will allow farmers to capture the yield of their crops before cultivation in the field of agriculture and thus help them make the necessary decisions. Implementation of such a method with web-based graphic software that is simple to use and the machine learning algorithm can then be distributed. This paper focuses mainly on predicting the yield of the crop by applying various machine-learning techniques. The classifier models used here include KNN, Decision Tree, Random Forest, and Voting Classifier. The prediction made by machine learning algorithms will help the farmers decide which crop to grow to induce the most yield by considering factors like temperature, rainfall, humidity, pH, etc. This bridges the gap between technology and the agriculture sector.</description><identifier>ISSN: 2267-1242</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202452903008</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>E3S web of conferences, 2024, Vol.529, p.3008</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1578-9c2f19fa74b22d3f2ea97f02eb2819a4b6d96c2dbb157184834a735026244e6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Sankar, B.</contributor><contributor>Ramesh Kumar, D.</contributor><contributor>Arunkumar, K.</contributor><contributor>Swaminathan, P.</contributor><creatorcontrib>Addu, Sowjanya</creatorcontrib><creatorcontrib>Sheelam, Srujana</creatorcontrib><creatorcontrib>Mekala, Samhitha</creatorcontrib><creatorcontrib>Sulthana, Nazma</creatorcontrib><creatorcontrib>Mekala, Lohitha</creatorcontrib><creatorcontrib>Alsalami, Zaid</creatorcontrib><title>Assessing Environmental Impact: Machine Learning for Crop Yield Prediction</title><title>E3S web of conferences</title><description>Most agricultural crops have been badly affected by the effect of global climate change in India. In terms of their output over the past 20 years. It will allow policymakers and farmers to take effective marketing and storage steps to predict crop yields earlier in their harvest. This project will allow farmers to capture the yield of their crops before cultivation in the field of agriculture and thus help them make the necessary decisions. Implementation of such a method with web-based graphic software that is simple to use and the machine learning algorithm can then be distributed. This paper focuses mainly on predicting the yield of the crop by applying various machine-learning techniques. The classifier models used here include KNN, Decision Tree, Random Forest, and Voting Classifier. The prediction made by machine learning algorithms will help the farmers decide which crop to grow to induce the most yield by considering factors like temperature, rainfall, humidity, pH, etc. This bridges the gap between technology and the agriculture sector.</description><issn>2267-1242</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMtKAzEYhYMoWGrfwMW8wNjkT-YSd6VUrVR0oQtX4Z9caso0Kckg-Pa2tkhX53A4fIuPkFtG7xit2NTyrGNwU6AgKpCUU9pekBFA3ZQMBFye9WsyyXlDKWVQtYKKEXme5Wxz9mFdLMK3TzFsbRiwL5bbHerhvnhB_eWDLVYWUzjcXEzFPMVd8eltb4q3ZI3Xg4_hhlw57LOdnHJMPh4W7_OncvX6uJzPVqVmVdOWUoNj0mEjOgDDHViUjaNgO2iZRNHVRtYaTNft76wVLRfY8IpCDULY2vExWR65JuJG7ZLfYvpREb36G2JaK0yD171VAlpqKukol1pg5braUmEaNHVj0Rq-Z4kjS6eYc7Lun8eoOuhVJ73qXC__BSQ8bnE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Addu, Sowjanya</creator><creator>Sheelam, Srujana</creator><creator>Mekala, Samhitha</creator><creator>Sulthana, Nazma</creator><creator>Mekala, Lohitha</creator><creator>Alsalami, Zaid</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Assessing Environmental Impact: Machine Learning for Crop Yield Prediction</title><author>Addu, Sowjanya ; Sheelam, Srujana ; Mekala, Samhitha ; Sulthana, Nazma ; Mekala, Lohitha ; Alsalami, Zaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1578-9c2f19fa74b22d3f2ea97f02eb2819a4b6d96c2dbb157184834a735026244e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Addu, Sowjanya</creatorcontrib><creatorcontrib>Sheelam, Srujana</creatorcontrib><creatorcontrib>Mekala, Samhitha</creatorcontrib><creatorcontrib>Sulthana, Nazma</creatorcontrib><creatorcontrib>Mekala, Lohitha</creatorcontrib><creatorcontrib>Alsalami, Zaid</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Addu, Sowjanya</au><au>Sheelam, Srujana</au><au>Mekala, Samhitha</au><au>Sulthana, Nazma</au><au>Mekala, Lohitha</au><au>Alsalami, Zaid</au><au>Sankar, B.</au><au>Ramesh Kumar, D.</au><au>Arunkumar, K.</au><au>Swaminathan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Environmental Impact: Machine Learning for Crop Yield Prediction</atitle><jtitle>E3S web of conferences</jtitle><date>2024</date><risdate>2024</risdate><volume>529</volume><spage>3008</spage><pages>3008-</pages><issn>2267-1242</issn><eissn>2267-1242</eissn><abstract>Most agricultural crops have been badly affected by the effect of global climate change in India. In terms of their output over the past 20 years. It will allow policymakers and farmers to take effective marketing and storage steps to predict crop yields earlier in their harvest. This project will allow farmers to capture the yield of their crops before cultivation in the field of agriculture and thus help them make the necessary decisions. Implementation of such a method with web-based graphic software that is simple to use and the machine learning algorithm can then be distributed. This paper focuses mainly on predicting the yield of the crop by applying various machine-learning techniques. The classifier models used here include KNN, Decision Tree, Random Forest, and Voting Classifier. The prediction made by machine learning algorithms will help the farmers decide which crop to grow to induce the most yield by considering factors like temperature, rainfall, humidity, pH, etc. This bridges the gap between technology and the agriculture sector.</abstract><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202452903008</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S web of conferences, 2024, Vol.529, p.3008
issn 2267-1242
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4280d59f039c4a5fb6e04d7ad67eaed3
source Publicly Available Content Database
title Assessing Environmental Impact: Machine Learning for Crop Yield Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Environmental%20Impact:%20Machine%20Learning%20for%20Crop%20Yield%20Prediction&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Addu,%20Sowjanya&rft.date=2024&rft.volume=529&rft.spage=3008&rft.pages=3008-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202452903008&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_4280d59f039c4a5fb6e04d7ad67eaed3%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1578-9c2f19fa74b22d3f2ea97f02eb2819a4b6d96c2dbb157184834a735026244e6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true