Loading…

Investigation of Engineering Properties and Solidification Mechanism of Loess by Sodium Silicate Alkali-Activated Coal Gangue Powder

The aim of this study is to investigate the engineering properties and solidification mechanism of loess through the use of alkali-activated coal gangue powder with sodium silicate. Experimental methods and comprehensive analysis were employed to examine the effects of different proportions of alkal...

Full description

Saved in:
Bibliographic Details
Published in:Advances in civil engineering 2024-05, Vol.2024, p.1-9
Main Authors: Yang, Yang, Yu, Shengsheng, Ma, Xiao, Hu, Aiping, Li, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c366t-f35ee65a0fef2eaf3f36c93986c0f5307a088dda433e8e5625a9c95b9a9f002b3
container_end_page 9
container_issue
container_start_page 1
container_title Advances in civil engineering
container_volume 2024
creator Yang, Yang
Yu, Shengsheng
Ma, Xiao
Hu, Aiping
Li, Ping
description The aim of this study is to investigate the engineering properties and solidification mechanism of loess through the use of alkali-activated coal gangue powder with sodium silicate. Experimental methods and comprehensive analysis were employed to examine the effects of different proportions of alkali-activated coal gangue powder with sodium silicate on the engineering properties of loess, including mass shrinkage, compressibility, and shear strength. Additionally, scanning electron microscopy was utilized to gain in-depth insights into the interaction and solidification mechanism between loess and alkali-activated coal gangue powder. The results show that the sodium silicate alkali-activated gangue powder curing loess has significantly improved the compressive strength and shear strength of the loess. With a ratio of 7 : 2 : 1, the 28 days compressive strength of solidified loess is 1.7 MPa, and the shear strength is 67.92 kPa, which is 1.91 and 2.13 times the 28 days compressive strength and shear strength of unmixed gangue powder and sodium silicate specimens respectively. The hydration–hydrolysis reaction, ion-exchange reaction, and volcanic ash reaction of the gangue powder under an alkaline environment generated hydrides that filled the pores between soil particles, enhanced the interparticle cohesion, and made the internal structure of the specimens denser, improving the engineering performance of loess solidification. The proposed sodium silicate alkali-activated gangue powder curing loess mechanism can provide a theoretical reference for the engineering application of gangue powder and the curing modification of loess.
doi_str_mv 10.1155/2024/7718335
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_429a24ccd2104378bc9f8c5100e2368e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_429a24ccd2104378bc9f8c5100e2368e</doaj_id><sourcerecordid>3060197414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-f35ee65a0fef2eaf3f36c93986c0f5307a088dda433e8e5625a9c95b9a9f002b3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhiPUSkWUW3-AJY5twN-xj6sVpSttVSTas-XY42Catbd2FsS9P5xsgzj25PHomXc-3qb5RPAlIUJcUUz5VdcRxZg4aU6JVF2rsObv3mIlPzTntcYec95RRSk5bf5u0iPUKQ52ijmhHNB1GmICKDEN6LbkPZQpQkU2eXSXx-hjiG6Bv4O7tynW3bFsm6FW1D_PkI-HHbqL45EDtBp_2zG2KzfFx_nv0TrbEd3YNBwA3eYnD-Vj8z7YscL563vW_Pp6_XP9rd3-uNmsV9vWMSmnNjABIIXFAQIFG1hg0mmmlXQ4CIY7i5Xy3nLGQIGQVFjttOi11QFj2rOzZrPo-mwfzL7EnS3PJtto_iVyGYydt3UjGE61pdw5TwnmrFO900E5QTAGyqSCWeti0dqX_Ocwn9A85ENJ8_iGYYmJ7jjhM_VloVzJtRYIb10JNkfbzNE282rbjH9e8PuYvH2K_6dfAEmZl8U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060197414</pqid></control><display><type>article</type><title>Investigation of Engineering Properties and Solidification Mechanism of Loess by Sodium Silicate Alkali-Activated Coal Gangue Powder</title><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><creator>Yang, Yang ; Yu, Shengsheng ; Ma, Xiao ; Hu, Aiping ; Li, Ping</creator><contributor>Ma, Tianshou ; Tianshou Ma</contributor><creatorcontrib>Yang, Yang ; Yu, Shengsheng ; Ma, Xiao ; Hu, Aiping ; Li, Ping ; Ma, Tianshou ; Tianshou Ma</creatorcontrib><description>The aim of this study is to investigate the engineering properties and solidification mechanism of loess through the use of alkali-activated coal gangue powder with sodium silicate. Experimental methods and comprehensive analysis were employed to examine the effects of different proportions of alkali-activated coal gangue powder with sodium silicate on the engineering properties of loess, including mass shrinkage, compressibility, and shear strength. Additionally, scanning electron microscopy was utilized to gain in-depth insights into the interaction and solidification mechanism between loess and alkali-activated coal gangue powder. The results show that the sodium silicate alkali-activated gangue powder curing loess has significantly improved the compressive strength and shear strength of the loess. With a ratio of 7 : 2 : 1, the 28 days compressive strength of solidified loess is 1.7 MPa, and the shear strength is 67.92 kPa, which is 1.91 and 2.13 times the 28 days compressive strength and shear strength of unmixed gangue powder and sodium silicate specimens respectively. The hydration–hydrolysis reaction, ion-exchange reaction, and volcanic ash reaction of the gangue powder under an alkaline environment generated hydrides that filled the pores between soil particles, enhanced the interparticle cohesion, and made the internal structure of the specimens denser, improving the engineering performance of loess solidification. The proposed sodium silicate alkali-activated gangue powder curing loess mechanism can provide a theoretical reference for the engineering application of gangue powder and the curing modification of loess.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2024/7718335</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Carbon ; Cement ; Coal ; Compressibility ; Compressive strength ; Curing ; Engineering ; Experimental methods ; Gangue ; Geology ; Ion exchange ; Load ; Loess ; Ratios ; Shear strength ; Shear tests ; Sodium ; Sodium silicates ; Solidification ; Solids ; Test methods ; Volcanic ash ; Water</subject><ispartof>Advances in civil engineering, 2024-05, Vol.2024, p.1-9</ispartof><rights>Copyright © 2024 Yang Yang et al.</rights><rights>Copyright © 2024 Yang Yang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-f35ee65a0fef2eaf3f36c93986c0f5307a088dda433e8e5625a9c95b9a9f002b3</cites><orcidid>0009-0002-3964-7269 ; 0009-0001-1533-1318 ; 0009-0009-0577-6469 ; 0000-0002-1815-4548 ; 0009-0003-0012-4206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3060197414/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3060197414?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Ma, Tianshou</contributor><contributor>Tianshou Ma</contributor><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Yu, Shengsheng</creatorcontrib><creatorcontrib>Ma, Xiao</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><title>Investigation of Engineering Properties and Solidification Mechanism of Loess by Sodium Silicate Alkali-Activated Coal Gangue Powder</title><title>Advances in civil engineering</title><description>The aim of this study is to investigate the engineering properties and solidification mechanism of loess through the use of alkali-activated coal gangue powder with sodium silicate. Experimental methods and comprehensive analysis were employed to examine the effects of different proportions of alkali-activated coal gangue powder with sodium silicate on the engineering properties of loess, including mass shrinkage, compressibility, and shear strength. Additionally, scanning electron microscopy was utilized to gain in-depth insights into the interaction and solidification mechanism between loess and alkali-activated coal gangue powder. The results show that the sodium silicate alkali-activated gangue powder curing loess has significantly improved the compressive strength and shear strength of the loess. With a ratio of 7 : 2 : 1, the 28 days compressive strength of solidified loess is 1.7 MPa, and the shear strength is 67.92 kPa, which is 1.91 and 2.13 times the 28 days compressive strength and shear strength of unmixed gangue powder and sodium silicate specimens respectively. The hydration–hydrolysis reaction, ion-exchange reaction, and volcanic ash reaction of the gangue powder under an alkaline environment generated hydrides that filled the pores between soil particles, enhanced the interparticle cohesion, and made the internal structure of the specimens denser, improving the engineering performance of loess solidification. The proposed sodium silicate alkali-activated gangue powder curing loess mechanism can provide a theoretical reference for the engineering application of gangue powder and the curing modification of loess.</description><subject>Carbon</subject><subject>Cement</subject><subject>Coal</subject><subject>Compressibility</subject><subject>Compressive strength</subject><subject>Curing</subject><subject>Engineering</subject><subject>Experimental methods</subject><subject>Gangue</subject><subject>Geology</subject><subject>Ion exchange</subject><subject>Load</subject><subject>Loess</subject><subject>Ratios</subject><subject>Shear strength</subject><subject>Shear tests</subject><subject>Sodium</subject><subject>Sodium silicates</subject><subject>Solidification</subject><subject>Solids</subject><subject>Test methods</subject><subject>Volcanic ash</subject><subject>Water</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1P3DAQhiPUSkWUW3-AJY5twN-xj6sVpSttVSTas-XY42Catbd2FsS9P5xsgzj25PHomXc-3qb5RPAlIUJcUUz5VdcRxZg4aU6JVF2rsObv3mIlPzTntcYec95RRSk5bf5u0iPUKQ52ijmhHNB1GmICKDEN6LbkPZQpQkU2eXSXx-hjiG6Bv4O7tynW3bFsm6FW1D_PkI-HHbqL45EDtBp_2zG2KzfFx_nv0TrbEd3YNBwA3eYnD-Vj8z7YscL563vW_Pp6_XP9rd3-uNmsV9vWMSmnNjABIIXFAQIFG1hg0mmmlXQ4CIY7i5Xy3nLGQIGQVFjttOi11QFj2rOzZrPo-mwfzL7EnS3PJtto_iVyGYydt3UjGE61pdw5TwnmrFO900E5QTAGyqSCWeti0dqX_Ocwn9A85ENJ8_iGYYmJ7jjhM_VloVzJtRYIb10JNkfbzNE282rbjH9e8PuYvH2K_6dfAEmZl8U</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Yang, Yang</creator><creator>Yu, Shengsheng</creator><creator>Ma, Xiao</creator><creator>Hu, Aiping</creator><creator>Li, Ping</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-3964-7269</orcidid><orcidid>https://orcid.org/0009-0001-1533-1318</orcidid><orcidid>https://orcid.org/0009-0009-0577-6469</orcidid><orcidid>https://orcid.org/0000-0002-1815-4548</orcidid><orcidid>https://orcid.org/0009-0003-0012-4206</orcidid></search><sort><creationdate>20240515</creationdate><title>Investigation of Engineering Properties and Solidification Mechanism of Loess by Sodium Silicate Alkali-Activated Coal Gangue Powder</title><author>Yang, Yang ; Yu, Shengsheng ; Ma, Xiao ; Hu, Aiping ; Li, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-f35ee65a0fef2eaf3f36c93986c0f5307a088dda433e8e5625a9c95b9a9f002b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Cement</topic><topic>Coal</topic><topic>Compressibility</topic><topic>Compressive strength</topic><topic>Curing</topic><topic>Engineering</topic><topic>Experimental methods</topic><topic>Gangue</topic><topic>Geology</topic><topic>Ion exchange</topic><topic>Load</topic><topic>Loess</topic><topic>Ratios</topic><topic>Shear strength</topic><topic>Shear tests</topic><topic>Sodium</topic><topic>Sodium silicates</topic><topic>Solidification</topic><topic>Solids</topic><topic>Test methods</topic><topic>Volcanic ash</topic><topic>Water</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Yu, Shengsheng</creatorcontrib><creatorcontrib>Ma, Xiao</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Yu, Shengsheng</au><au>Ma, Xiao</au><au>Hu, Aiping</au><au>Li, Ping</au><au>Ma, Tianshou</au><au>Tianshou Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Engineering Properties and Solidification Mechanism of Loess by Sodium Silicate Alkali-Activated Coal Gangue Powder</atitle><jtitle>Advances in civil engineering</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>The aim of this study is to investigate the engineering properties and solidification mechanism of loess through the use of alkali-activated coal gangue powder with sodium silicate. Experimental methods and comprehensive analysis were employed to examine the effects of different proportions of alkali-activated coal gangue powder with sodium silicate on the engineering properties of loess, including mass shrinkage, compressibility, and shear strength. Additionally, scanning electron microscopy was utilized to gain in-depth insights into the interaction and solidification mechanism between loess and alkali-activated coal gangue powder. The results show that the sodium silicate alkali-activated gangue powder curing loess has significantly improved the compressive strength and shear strength of the loess. With a ratio of 7 : 2 : 1, the 28 days compressive strength of solidified loess is 1.7 MPa, and the shear strength is 67.92 kPa, which is 1.91 and 2.13 times the 28 days compressive strength and shear strength of unmixed gangue powder and sodium silicate specimens respectively. The hydration–hydrolysis reaction, ion-exchange reaction, and volcanic ash reaction of the gangue powder under an alkaline environment generated hydrides that filled the pores between soil particles, enhanced the interparticle cohesion, and made the internal structure of the specimens denser, improving the engineering performance of loess solidification. The proposed sodium silicate alkali-activated gangue powder curing loess mechanism can provide a theoretical reference for the engineering application of gangue powder and the curing modification of loess.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2024/7718335</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0002-3964-7269</orcidid><orcidid>https://orcid.org/0009-0001-1533-1318</orcidid><orcidid>https://orcid.org/0009-0009-0577-6469</orcidid><orcidid>https://orcid.org/0000-0002-1815-4548</orcidid><orcidid>https://orcid.org/0009-0003-0012-4206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8086
ispartof Advances in civil engineering, 2024-05, Vol.2024, p.1-9
issn 1687-8086
1687-8094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_429a24ccd2104378bc9f8c5100e2368e
source Publicly Available Content Database; Wiley_OA刊
subjects Carbon
Cement
Coal
Compressibility
Compressive strength
Curing
Engineering
Experimental methods
Gangue
Geology
Ion exchange
Load
Loess
Ratios
Shear strength
Shear tests
Sodium
Sodium silicates
Solidification
Solids
Test methods
Volcanic ash
Water
title Investigation of Engineering Properties and Solidification Mechanism of Loess by Sodium Silicate Alkali-Activated Coal Gangue Powder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Engineering%20Properties%20and%20Solidification%20Mechanism%20of%20Loess%20by%20Sodium%20Silicate%20Alkali-Activated%20Coal%20Gangue%20Powder&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Yang,%20Yang&rft.date=2024-05-15&rft.volume=2024&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2024/7718335&rft_dat=%3Cproquest_doaj_%3E3060197414%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-f35ee65a0fef2eaf3f36c93986c0f5307a088dda433e8e5625a9c95b9a9f002b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060197414&rft_id=info:pmid/&rfr_iscdi=true