Loading…

Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose

The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrat...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2006-01, Vol.6 (1), p.1-18
Main Authors: Zhou, Hanying, Homer, Margie L., Shevade, Abhijit V., Ryan, Margaret A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3
cites cdi_FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3
container_end_page 18
container_issue 1
container_start_page 1
container_title Sensors (Basel, Switzerland)
container_volume 6
creator Zhou, Hanying
Homer, Margie L.
Shevade, Abhijit V.
Ryan, Margaret A.
description The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures) with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.
doi_str_mv 10.3390/s6010001
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_429dbf05e1ff41c3816c00e8903b6cce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_429dbf05e1ff41c3816c00e8903b6cce</doaj_id><sourcerecordid>3340000141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3</originalsourceid><addsrcrecordid>eNpdkt9rFDEQgBdRsFbBPyEgiC-r-bW55EWoR9WDa0WqzyE7O7nLsZe0SVbto_-5214t1pdMMvPNRximaV4y-lYIQ98VRRmllD1qjpjkstWc08f_3J82z0rZUcqFEPqo-X2e4hgiukzW6EptL64ml7GQD67gQM6wbtNAfMpkNWCswV-HuCEuDuTr5O7fF_Mx4m36LPya-5YpVrcPcUYKCZGchEx-hrqdEXI6ItScYgByngo-b554NxZ8cRePm-8fT78tP7frL59Wy5N1C1Ky2iJApxz1PZPItF44EH7RUfBSdL0HNA48aqmo6YCzTivOPTijxdBLaQSK42Z18A7J7exlDnuXr21ywd4mUt5Yl2uAEa3kZug97ZB5LxkIzRRQitpQ0SuAG9f7g-ty6vc4wDyZ7MYH0oeVGLZ2k35YoVVnqJ4Fr-8EOV1NWKrdhwI4ji5imoplplNcMTmDr_4Dd2nKcR6UZZ1YSKOZXMzUmwMFOZWS0d9_hVF7sxb271qIPxwTq_M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537498147</pqid></control><display><type>article</type><title>Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Zhou, Hanying ; Homer, Margie L. ; Shevade, Abhijit V. ; Ryan, Margaret A.</creator><creatorcontrib>Zhou, Hanying ; Homer, Margie L. ; Shevade, Abhijit V. ; Ryan, Margaret A.</creatorcontrib><description>The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures) with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s6010001</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Algorithms ; Back propagation ; Chemical spills ; Data analysis ; electronic nose ; Full Research Paper ; Gases ; Humidity ; Laboratories ; Linear algebra ; Neural networks ; nonlinear least squares ; Polymers ; Principal components analysis ; sensor array data analysis ; Sensors ; Software ; Software development</subject><ispartof>Sensors (Basel, Switzerland), 2006-01, Vol.6 (1), p.1-18</ispartof><rights>Copyright MDPI AG 2006</rights><rights>2006 by MDPI ( ). 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3</citedby><cites>FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537498147/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537498147?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Zhou, Hanying</creatorcontrib><creatorcontrib>Homer, Margie L.</creatorcontrib><creatorcontrib>Shevade, Abhijit V.</creatorcontrib><creatorcontrib>Ryan, Margaret A.</creatorcontrib><title>Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose</title><title>Sensors (Basel, Switzerland)</title><description>The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures) with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.</description><subject>Air pollution</subject><subject>Algorithms</subject><subject>Back propagation</subject><subject>Chemical spills</subject><subject>Data analysis</subject><subject>electronic nose</subject><subject>Full Research Paper</subject><subject>Gases</subject><subject>Humidity</subject><subject>Laboratories</subject><subject>Linear algebra</subject><subject>Neural networks</subject><subject>nonlinear least squares</subject><subject>Polymers</subject><subject>Principal components analysis</subject><subject>sensor array data analysis</subject><subject>Sensors</subject><subject>Software</subject><subject>Software development</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQgBdRsFbBPyEgiC-r-bW55EWoR9WDa0WqzyE7O7nLsZe0SVbto_-5214t1pdMMvPNRximaV4y-lYIQ98VRRmllD1qjpjkstWc08f_3J82z0rZUcqFEPqo-X2e4hgiukzW6EptL64ml7GQD67gQM6wbtNAfMpkNWCswV-HuCEuDuTr5O7fF_Mx4m36LPya-5YpVrcPcUYKCZGchEx-hrqdEXI6ItScYgByngo-b554NxZ8cRePm-8fT78tP7frL59Wy5N1C1Ky2iJApxz1PZPItF44EH7RUfBSdL0HNA48aqmo6YCzTivOPTijxdBLaQSK42Z18A7J7exlDnuXr21ywd4mUt5Yl2uAEa3kZug97ZB5LxkIzRRQitpQ0SuAG9f7g-ty6vc4wDyZ7MYH0oeVGLZ2k35YoVVnqJ4Fr-8EOV1NWKrdhwI4ji5imoplplNcMTmDr_4Dd2nKcR6UZZ1YSKOZXMzUmwMFOZWS0d9_hVF7sxb271qIPxwTq_M</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Zhou, Hanying</creator><creator>Homer, Margie L.</creator><creator>Shevade, Abhijit V.</creator><creator>Ryan, Margaret A.</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QR</scope><scope>7TV</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20060101</creationdate><title>Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose</title><author>Zhou, Hanying ; Homer, Margie L. ; Shevade, Abhijit V. ; Ryan, Margaret A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Air pollution</topic><topic>Algorithms</topic><topic>Back propagation</topic><topic>Chemical spills</topic><topic>Data analysis</topic><topic>electronic nose</topic><topic>Full Research Paper</topic><topic>Gases</topic><topic>Humidity</topic><topic>Laboratories</topic><topic>Linear algebra</topic><topic>Neural networks</topic><topic>nonlinear least squares</topic><topic>Polymers</topic><topic>Principal components analysis</topic><topic>sensor array data analysis</topic><topic>Sensors</topic><topic>Software</topic><topic>Software development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hanying</creatorcontrib><creatorcontrib>Homer, Margie L.</creatorcontrib><creatorcontrib>Shevade, Abhijit V.</creatorcontrib><creatorcontrib>Ryan, Margaret A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Chemoreception Abstracts</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hanying</au><au>Homer, Margie L.</au><au>Shevade, Abhijit V.</au><au>Ryan, Margaret A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures) with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s6010001</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2006-01, Vol.6 (1), p.1-18
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_429dbf05e1ff41c3816c00e8903b6cce
source PubMed Central (Open Access); Publicly Available Content Database
subjects Air pollution
Algorithms
Back propagation
Chemical spills
Data analysis
electronic nose
Full Research Paper
Gases
Humidity
Laboratories
Linear algebra
Neural networks
nonlinear least squares
Polymers
Principal components analysis
sensor array data analysis
Sensors
Software
Software development
title Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Least-Squares%20Based%20Method%20for%20Identifying%20and%20Quantifying%20Single%20and%20Mixed%20Contaminants%20in%20Air%20with%20an%20Electronic%20Nose&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhou,%20Hanying&rft.date=2006-01-01&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s6010001&rft_dat=%3Cproquest_doaj_%3E3340000141%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537498147&rft_id=info:pmid/&rfr_iscdi=true