Loading…
Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose
The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrat...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2006-01, Vol.6 (1), p.1-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 1 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 6 |
creator | Zhou, Hanying Homer, Margie L. Shevade, Abhijit V. Ryan, Margaret A. |
description | The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures) with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples. |
doi_str_mv | 10.3390/s6010001 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_429dbf05e1ff41c3816c00e8903b6cce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_429dbf05e1ff41c3816c00e8903b6cce</doaj_id><sourcerecordid>3340000141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3</originalsourceid><addsrcrecordid>eNpdkt9rFDEQgBdRsFbBPyEgiC-r-bW55EWoR9WDa0WqzyE7O7nLsZe0SVbto_-5214t1pdMMvPNRximaV4y-lYIQ98VRRmllD1qjpjkstWc08f_3J82z0rZUcqFEPqo-X2e4hgiukzW6EptL64ml7GQD67gQM6wbtNAfMpkNWCswV-HuCEuDuTr5O7fF_Mx4m36LPya-5YpVrcPcUYKCZGchEx-hrqdEXI6ItScYgByngo-b554NxZ8cRePm-8fT78tP7frL59Wy5N1C1Ky2iJApxz1PZPItF44EH7RUfBSdL0HNA48aqmo6YCzTivOPTijxdBLaQSK42Z18A7J7exlDnuXr21ywd4mUt5Yl2uAEa3kZug97ZB5LxkIzRRQitpQ0SuAG9f7g-ty6vc4wDyZ7MYH0oeVGLZ2k35YoVVnqJ4Fr-8EOV1NWKrdhwI4ji5imoplplNcMTmDr_4Dd2nKcR6UZZ1YSKOZXMzUmwMFOZWS0d9_hVF7sxb271qIPxwTq_M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537498147</pqid></control><display><type>article</type><title>Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Zhou, Hanying ; Homer, Margie L. ; Shevade, Abhijit V. ; Ryan, Margaret A.</creator><creatorcontrib>Zhou, Hanying ; Homer, Margie L. ; Shevade, Abhijit V. ; Ryan, Margaret A.</creatorcontrib><description>The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures) with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s6010001</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Algorithms ; Back propagation ; Chemical spills ; Data analysis ; electronic nose ; Full Research Paper ; Gases ; Humidity ; Laboratories ; Linear algebra ; Neural networks ; nonlinear least squares ; Polymers ; Principal components analysis ; sensor array data analysis ; Sensors ; Software ; Software development</subject><ispartof>Sensors (Basel, Switzerland), 2006-01, Vol.6 (1), p.1-18</ispartof><rights>Copyright MDPI AG 2006</rights><rights>2006 by MDPI ( ). 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3</citedby><cites>FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537498147/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537498147?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Zhou, Hanying</creatorcontrib><creatorcontrib>Homer, Margie L.</creatorcontrib><creatorcontrib>Shevade, Abhijit V.</creatorcontrib><creatorcontrib>Ryan, Margaret A.</creatorcontrib><title>Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose</title><title>Sensors (Basel, Switzerland)</title><description>The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures) with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.</description><subject>Air pollution</subject><subject>Algorithms</subject><subject>Back propagation</subject><subject>Chemical spills</subject><subject>Data analysis</subject><subject>electronic nose</subject><subject>Full Research Paper</subject><subject>Gases</subject><subject>Humidity</subject><subject>Laboratories</subject><subject>Linear algebra</subject><subject>Neural networks</subject><subject>nonlinear least squares</subject><subject>Polymers</subject><subject>Principal components analysis</subject><subject>sensor array data analysis</subject><subject>Sensors</subject><subject>Software</subject><subject>Software development</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQgBdRsFbBPyEgiC-r-bW55EWoR9WDa0WqzyE7O7nLsZe0SVbto_-5214t1pdMMvPNRximaV4y-lYIQ98VRRmllD1qjpjkstWc08f_3J82z0rZUcqFEPqo-X2e4hgiukzW6EptL64ml7GQD67gQM6wbtNAfMpkNWCswV-HuCEuDuTr5O7fF_Mx4m36LPya-5YpVrcPcUYKCZGchEx-hrqdEXI6ItScYgByngo-b554NxZ8cRePm-8fT78tP7frL59Wy5N1C1Ky2iJApxz1PZPItF44EH7RUfBSdL0HNA48aqmo6YCzTivOPTijxdBLaQSK42Z18A7J7exlDnuXr21ywd4mUt5Yl2uAEa3kZug97ZB5LxkIzRRQitpQ0SuAG9f7g-ty6vc4wDyZ7MYH0oeVGLZ2k35YoVVnqJ4Fr-8EOV1NWKrdhwI4ji5imoplplNcMTmDr_4Dd2nKcR6UZZ1YSKOZXMzUmwMFOZWS0d9_hVF7sxb271qIPxwTq_M</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Zhou, Hanying</creator><creator>Homer, Margie L.</creator><creator>Shevade, Abhijit V.</creator><creator>Ryan, Margaret A.</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QR</scope><scope>7TV</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20060101</creationdate><title>Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose</title><author>Zhou, Hanying ; Homer, Margie L. ; Shevade, Abhijit V. ; Ryan, Margaret A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Air pollution</topic><topic>Algorithms</topic><topic>Back propagation</topic><topic>Chemical spills</topic><topic>Data analysis</topic><topic>electronic nose</topic><topic>Full Research Paper</topic><topic>Gases</topic><topic>Humidity</topic><topic>Laboratories</topic><topic>Linear algebra</topic><topic>Neural networks</topic><topic>nonlinear least squares</topic><topic>Polymers</topic><topic>Principal components analysis</topic><topic>sensor array data analysis</topic><topic>Sensors</topic><topic>Software</topic><topic>Software development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hanying</creatorcontrib><creatorcontrib>Homer, Margie L.</creatorcontrib><creatorcontrib>Shevade, Abhijit V.</creatorcontrib><creatorcontrib>Ryan, Margaret A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Chemoreception Abstracts</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hanying</au><au>Homer, Margie L.</au><au>Shevade, Abhijit V.</au><au>Ryan, Margaret A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose) using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures) with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s6010001</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2006-01, Vol.6 (1), p.1-18 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_429dbf05e1ff41c3816c00e8903b6cce |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | Air pollution Algorithms Back propagation Chemical spills Data analysis electronic nose Full Research Paper Gases Humidity Laboratories Linear algebra Neural networks nonlinear least squares Polymers Principal components analysis sensor array data analysis Sensors Software Software development |
title | Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Least-Squares%20Based%20Method%20for%20Identifying%20and%20Quantifying%20Single%20and%20Mixed%20Contaminants%20in%20Air%20with%20an%20Electronic%20Nose&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhou,%20Hanying&rft.date=2006-01-01&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s6010001&rft_dat=%3Cproquest_doaj_%3E3340000141%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-ecc56a0fb14e1887ac3f750cf435bfce9acfe846095c2158622fca983db4493e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537498147&rft_id=info:pmid/&rfr_iscdi=true |