Loading…

Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification

The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-11, Vol.14 (1), p.6969-13, Article 6969
Main Authors: Urso, Mario, Ussia, Martina, Peng, Xia, Oral, Cagatay M., Pumera, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3
cites cdi_FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3
container_end_page 13
container_issue 1
container_start_page 6969
container_title Nature communications
container_volume 14
creator Urso, Mario
Ussia, Martina
Peng, Xia
Oral, Cagatay M.
Pumera, Martin
description The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO 2 /α-Fe 2 O 3 microrobots, consisting of peanut-shaped α-Fe 2 O 3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO 2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H 2 O 2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots’ active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics. Microrobot collectives promise new functions beyond individuals’ capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification.
doi_str_mv 10.1038/s41467-023-42674-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_42c453670ee944cf84192c685e0f1c68</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_42c453670ee944cf84192c685e0f1c68</doaj_id><sourcerecordid>2884934535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuJvxyeEKqCVKiEhuHCxJt5x6lUSL3YC2n-Pd1NKywH74JH9zDuv7amql5RcUMLbt1lQoXRDGG8EU1o05kl1yoigDdWMP30Qn1TnOW9JGdzQVojn1QnXpmQbdlp9_4IuTj70S4JuwDrj4BvIGcdu2NfR17vbOEcHMwz7Obh6hH7CYxBciil2cc61j6n-BTOmerek4EPBQ5xeVM88DBnP79az6tvHD18vr5qbz5-uL9_fNE4KOjfgNpqBkkRq7loAB7JTquuKfam9QmNaBsQwbTZadyBNC7x1EvBAMnT8rLpedTcRtnaXwghpbyMEe9yIqbeQiuUBrWBOSK40QTRCON8KaphTrUTiaVmL1rtVa7d0I24cTnOC4ZHo45Mp3No-_rSUKEbKLApv7hRS_LFgnu0YssNhgAnjki1rW1nurYQo6Ot_0G1c0lTe6kAJw4tXWSi2UuW9c07o791QYg-tYNdWsKW4PbaCNSXp1cN73Kf8-fgC8BXI5WjqMf2t_R_Z39YDwFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884934535</pqid></control><display><type>article</type><title>Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification</title><source>Publicly Available Content (ProQuest)</source><source>Nature Journals</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Urso, Mario ; Ussia, Martina ; Peng, Xia ; Oral, Cagatay M. ; Pumera, Martin</creator><creatorcontrib>Urso, Mario ; Ussia, Martina ; Peng, Xia ; Oral, Cagatay M. ; Pumera, Martin</creatorcontrib><description>The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO 2 /α-Fe 2 O 3 microrobots, consisting of peanut-shaped α-Fe 2 O 3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO 2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H 2 O 2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots’ active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics. Microrobot collectives promise new functions beyond individuals’ capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-42674-9</identifier><identifier>PMID: 37914692</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/135 ; 639/301/1005/1006 ; 639/301/357/339 ; Active control ; Atomic layer epitaxy ; Automation ; Clusters ; Concentration gradient ; Degradation ; Dichlorophenoxyacetic acid ; Dipole interactions ; Ferric oxide ; Ferromagnetism ; Hematite ; Herbicides ; Humanities and Social Sciences ; Hydrogen peroxide ; Irradiation ; Light irradiation ; Magnetic dipoles ; Magnetic fields ; Magnetic properties ; Manufacturing engineering ; Microparticles ; Microrobots ; multidisciplinary ; Nanotechnology devices ; Persistent organic pollutants ; Pesticides ; Photocatalysis ; Reconfiguration ; Robotics ; Science ; Science (multidisciplinary) ; Self-assembly ; Swarming ; Swarming behavior ; Titanium dioxide ; Water purification</subject><ispartof>Nature communications, 2023-11, Vol.14 (1), p.6969-13, Article 6969</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3</citedby><cites>FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3</cites><orcidid>0000-0001-5846-2951 ; 0000-0002-3248-6725 ; 0000-0001-7993-8138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2884934535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2884934535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37914692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Urso, Mario</creatorcontrib><creatorcontrib>Ussia, Martina</creatorcontrib><creatorcontrib>Peng, Xia</creatorcontrib><creatorcontrib>Oral, Cagatay M.</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><title>Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO 2 /α-Fe 2 O 3 microrobots, consisting of peanut-shaped α-Fe 2 O 3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO 2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H 2 O 2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots’ active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics. Microrobot collectives promise new functions beyond individuals’ capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification.</description><subject>147/135</subject><subject>639/301/1005/1006</subject><subject>639/301/357/339</subject><subject>Active control</subject><subject>Atomic layer epitaxy</subject><subject>Automation</subject><subject>Clusters</subject><subject>Concentration gradient</subject><subject>Degradation</subject><subject>Dichlorophenoxyacetic acid</subject><subject>Dipole interactions</subject><subject>Ferric oxide</subject><subject>Ferromagnetism</subject><subject>Hematite</subject><subject>Herbicides</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen peroxide</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Magnetic dipoles</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Manufacturing engineering</subject><subject>Microparticles</subject><subject>Microrobots</subject><subject>multidisciplinary</subject><subject>Nanotechnology devices</subject><subject>Persistent organic pollutants</subject><subject>Pesticides</subject><subject>Photocatalysis</subject><subject>Reconfiguration</subject><subject>Robotics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self-assembly</subject><subject>Swarming</subject><subject>Swarming behavior</subject><subject>Titanium dioxide</subject><subject>Water purification</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuJvxyeEKqCVKiEhuHCxJt5x6lUSL3YC2n-Pd1NKywH74JH9zDuv7amql5RcUMLbt1lQoXRDGG8EU1o05kl1yoigDdWMP30Qn1TnOW9JGdzQVojn1QnXpmQbdlp9_4IuTj70S4JuwDrj4BvIGcdu2NfR17vbOEcHMwz7Obh6hH7CYxBciil2cc61j6n-BTOmerek4EPBQ5xeVM88DBnP79az6tvHD18vr5qbz5-uL9_fNE4KOjfgNpqBkkRq7loAB7JTquuKfam9QmNaBsQwbTZadyBNC7x1EvBAMnT8rLpedTcRtnaXwghpbyMEe9yIqbeQiuUBrWBOSK40QTRCON8KaphTrUTiaVmL1rtVa7d0I24cTnOC4ZHo45Mp3No-_rSUKEbKLApv7hRS_LFgnu0YssNhgAnjki1rW1nurYQo6Ot_0G1c0lTe6kAJw4tXWSi2UuW9c07o791QYg-tYNdWsKW4PbaCNSXp1cN73Kf8-fgC8BXI5WjqMf2t_R_Z39YDwFw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Urso, Mario</creator><creator>Ussia, Martina</creator><creator>Peng, Xia</creator><creator>Oral, Cagatay M.</creator><creator>Pumera, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid><orcidid>https://orcid.org/0000-0002-3248-6725</orcidid><orcidid>https://orcid.org/0000-0001-7993-8138</orcidid></search><sort><creationdate>20231101</creationdate><title>Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification</title><author>Urso, Mario ; Ussia, Martina ; Peng, Xia ; Oral, Cagatay M. ; Pumera, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>147/135</topic><topic>639/301/1005/1006</topic><topic>639/301/357/339</topic><topic>Active control</topic><topic>Atomic layer epitaxy</topic><topic>Automation</topic><topic>Clusters</topic><topic>Concentration gradient</topic><topic>Degradation</topic><topic>Dichlorophenoxyacetic acid</topic><topic>Dipole interactions</topic><topic>Ferric oxide</topic><topic>Ferromagnetism</topic><topic>Hematite</topic><topic>Herbicides</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen peroxide</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Magnetic dipoles</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Manufacturing engineering</topic><topic>Microparticles</topic><topic>Microrobots</topic><topic>multidisciplinary</topic><topic>Nanotechnology devices</topic><topic>Persistent organic pollutants</topic><topic>Pesticides</topic><topic>Photocatalysis</topic><topic>Reconfiguration</topic><topic>Robotics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self-assembly</topic><topic>Swarming</topic><topic>Swarming behavior</topic><topic>Titanium dioxide</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urso, Mario</creatorcontrib><creatorcontrib>Ussia, Martina</creatorcontrib><creatorcontrib>Peng, Xia</creatorcontrib><creatorcontrib>Oral, Cagatay M.</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urso, Mario</au><au>Ussia, Martina</au><au>Peng, Xia</au><au>Oral, Cagatay M.</au><au>Pumera, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>6969</spage><epage>13</epage><pages>6969-13</pages><artnum>6969</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO 2 /α-Fe 2 O 3 microrobots, consisting of peanut-shaped α-Fe 2 O 3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO 2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H 2 O 2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots’ active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics. Microrobot collectives promise new functions beyond individuals’ capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37914692</pmid><doi>10.1038/s41467-023-42674-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid><orcidid>https://orcid.org/0000-0002-3248-6725</orcidid><orcidid>https://orcid.org/0000-0001-7993-8138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-11, Vol.14 (1), p.6969-13, Article 6969
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_42c453670ee944cf84192c685e0f1c68
source Publicly Available Content (ProQuest); Nature Journals; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 147/135
639/301/1005/1006
639/301/357/339
Active control
Atomic layer epitaxy
Automation
Clusters
Concentration gradient
Degradation
Dichlorophenoxyacetic acid
Dipole interactions
Ferric oxide
Ferromagnetism
Hematite
Herbicides
Humanities and Social Sciences
Hydrogen peroxide
Irradiation
Light irradiation
Magnetic dipoles
Magnetic fields
Magnetic properties
Manufacturing engineering
Microparticles
Microrobots
multidisciplinary
Nanotechnology devices
Persistent organic pollutants
Pesticides
Photocatalysis
Reconfiguration
Robotics
Science
Science (multidisciplinary)
Self-assembly
Swarming
Swarming behavior
Titanium dioxide
Water purification
title Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconfigurable%20self-assembly%20of%20photocatalytic%20magnetic%20microrobots%20for%20water%20purification&rft.jtitle=Nature%20communications&rft.au=Urso,%20Mario&rft.date=2023-11-01&rft.volume=14&rft.issue=1&rft.spage=6969&rft.epage=13&rft.pages=6969-13&rft.artnum=6969&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-42674-9&rft_dat=%3Cproquest_doaj_%3E2884934535%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884934535&rft_id=info:pmid/37914692&rfr_iscdi=true