Loading…
Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification
The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still...
Saved in:
Published in: | Nature communications 2023-11, Vol.14 (1), p.6969-13, Article 6969 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 6969 |
container_title | Nature communications |
container_volume | 14 |
creator | Urso, Mario Ussia, Martina Peng, Xia Oral, Cagatay M. Pumera, Martin |
description | The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO
2
/α-Fe
2
O
3
microrobots, consisting of peanut-shaped α-Fe
2
O
3
(hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO
2
by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H
2
O
2
fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots’ active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
Microrobot collectives promise new functions beyond individuals’ capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification. |
doi_str_mv | 10.1038/s41467-023-42674-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_42c453670ee944cf84192c685e0f1c68</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_42c453670ee944cf84192c685e0f1c68</doaj_id><sourcerecordid>2884934535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuJvxyeEKqCVKiEhuHCxJt5x6lUSL3YC2n-Pd1NKywH74JH9zDuv7amql5RcUMLbt1lQoXRDGG8EU1o05kl1yoigDdWMP30Qn1TnOW9JGdzQVojn1QnXpmQbdlp9_4IuTj70S4JuwDrj4BvIGcdu2NfR17vbOEcHMwz7Obh6hH7CYxBciil2cc61j6n-BTOmerek4EPBQ5xeVM88DBnP79az6tvHD18vr5qbz5-uL9_fNE4KOjfgNpqBkkRq7loAB7JTquuKfam9QmNaBsQwbTZadyBNC7x1EvBAMnT8rLpedTcRtnaXwghpbyMEe9yIqbeQiuUBrWBOSK40QTRCON8KaphTrUTiaVmL1rtVa7d0I24cTnOC4ZHo45Mp3No-_rSUKEbKLApv7hRS_LFgnu0YssNhgAnjki1rW1nurYQo6Ot_0G1c0lTe6kAJw4tXWSi2UuW9c07o791QYg-tYNdWsKW4PbaCNSXp1cN73Kf8-fgC8BXI5WjqMf2t_R_Z39YDwFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884934535</pqid></control><display><type>article</type><title>Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification</title><source>Publicly Available Content (ProQuest)</source><source>Nature Journals</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Urso, Mario ; Ussia, Martina ; Peng, Xia ; Oral, Cagatay M. ; Pumera, Martin</creator><creatorcontrib>Urso, Mario ; Ussia, Martina ; Peng, Xia ; Oral, Cagatay M. ; Pumera, Martin</creatorcontrib><description>The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO
2
/α-Fe
2
O
3
microrobots, consisting of peanut-shaped α-Fe
2
O
3
(hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO
2
by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H
2
O
2
fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots’ active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
Microrobot collectives promise new functions beyond individuals’ capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-42674-9</identifier><identifier>PMID: 37914692</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/135 ; 639/301/1005/1006 ; 639/301/357/339 ; Active control ; Atomic layer epitaxy ; Automation ; Clusters ; Concentration gradient ; Degradation ; Dichlorophenoxyacetic acid ; Dipole interactions ; Ferric oxide ; Ferromagnetism ; Hematite ; Herbicides ; Humanities and Social Sciences ; Hydrogen peroxide ; Irradiation ; Light irradiation ; Magnetic dipoles ; Magnetic fields ; Magnetic properties ; Manufacturing engineering ; Microparticles ; Microrobots ; multidisciplinary ; Nanotechnology devices ; Persistent organic pollutants ; Pesticides ; Photocatalysis ; Reconfiguration ; Robotics ; Science ; Science (multidisciplinary) ; Self-assembly ; Swarming ; Swarming behavior ; Titanium dioxide ; Water purification</subject><ispartof>Nature communications, 2023-11, Vol.14 (1), p.6969-13, Article 6969</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3</citedby><cites>FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3</cites><orcidid>0000-0001-5846-2951 ; 0000-0002-3248-6725 ; 0000-0001-7993-8138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2884934535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2884934535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37914692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Urso, Mario</creatorcontrib><creatorcontrib>Ussia, Martina</creatorcontrib><creatorcontrib>Peng, Xia</creatorcontrib><creatorcontrib>Oral, Cagatay M.</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><title>Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO
2
/α-Fe
2
O
3
microrobots, consisting of peanut-shaped α-Fe
2
O
3
(hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO
2
by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H
2
O
2
fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots’ active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
Microrobot collectives promise new functions beyond individuals’ capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification.</description><subject>147/135</subject><subject>639/301/1005/1006</subject><subject>639/301/357/339</subject><subject>Active control</subject><subject>Atomic layer epitaxy</subject><subject>Automation</subject><subject>Clusters</subject><subject>Concentration gradient</subject><subject>Degradation</subject><subject>Dichlorophenoxyacetic acid</subject><subject>Dipole interactions</subject><subject>Ferric oxide</subject><subject>Ferromagnetism</subject><subject>Hematite</subject><subject>Herbicides</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen peroxide</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Magnetic dipoles</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Manufacturing engineering</subject><subject>Microparticles</subject><subject>Microrobots</subject><subject>multidisciplinary</subject><subject>Nanotechnology devices</subject><subject>Persistent organic pollutants</subject><subject>Pesticides</subject><subject>Photocatalysis</subject><subject>Reconfiguration</subject><subject>Robotics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self-assembly</subject><subject>Swarming</subject><subject>Swarming behavior</subject><subject>Titanium dioxide</subject><subject>Water purification</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuJvxyeEKqCVKiEhuHCxJt5x6lUSL3YC2n-Pd1NKywH74JH9zDuv7amql5RcUMLbt1lQoXRDGG8EU1o05kl1yoigDdWMP30Qn1TnOW9JGdzQVojn1QnXpmQbdlp9_4IuTj70S4JuwDrj4BvIGcdu2NfR17vbOEcHMwz7Obh6hH7CYxBciil2cc61j6n-BTOmerek4EPBQ5xeVM88DBnP79az6tvHD18vr5qbz5-uL9_fNE4KOjfgNpqBkkRq7loAB7JTquuKfam9QmNaBsQwbTZadyBNC7x1EvBAMnT8rLpedTcRtnaXwghpbyMEe9yIqbeQiuUBrWBOSK40QTRCON8KaphTrUTiaVmL1rtVa7d0I24cTnOC4ZHo45Mp3No-_rSUKEbKLApv7hRS_LFgnu0YssNhgAnjki1rW1nurYQo6Ot_0G1c0lTe6kAJw4tXWSi2UuW9c07o791QYg-tYNdWsKW4PbaCNSXp1cN73Kf8-fgC8BXI5WjqMf2t_R_Z39YDwFw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Urso, Mario</creator><creator>Ussia, Martina</creator><creator>Peng, Xia</creator><creator>Oral, Cagatay M.</creator><creator>Pumera, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid><orcidid>https://orcid.org/0000-0002-3248-6725</orcidid><orcidid>https://orcid.org/0000-0001-7993-8138</orcidid></search><sort><creationdate>20231101</creationdate><title>Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification</title><author>Urso, Mario ; Ussia, Martina ; Peng, Xia ; Oral, Cagatay M. ; Pumera, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>147/135</topic><topic>639/301/1005/1006</topic><topic>639/301/357/339</topic><topic>Active control</topic><topic>Atomic layer epitaxy</topic><topic>Automation</topic><topic>Clusters</topic><topic>Concentration gradient</topic><topic>Degradation</topic><topic>Dichlorophenoxyacetic acid</topic><topic>Dipole interactions</topic><topic>Ferric oxide</topic><topic>Ferromagnetism</topic><topic>Hematite</topic><topic>Herbicides</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen peroxide</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Magnetic dipoles</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Manufacturing engineering</topic><topic>Microparticles</topic><topic>Microrobots</topic><topic>multidisciplinary</topic><topic>Nanotechnology devices</topic><topic>Persistent organic pollutants</topic><topic>Pesticides</topic><topic>Photocatalysis</topic><topic>Reconfiguration</topic><topic>Robotics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self-assembly</topic><topic>Swarming</topic><topic>Swarming behavior</topic><topic>Titanium dioxide</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urso, Mario</creatorcontrib><creatorcontrib>Ussia, Martina</creatorcontrib><creatorcontrib>Peng, Xia</creatorcontrib><creatorcontrib>Oral, Cagatay M.</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urso, Mario</au><au>Ussia, Martina</au><au>Peng, Xia</au><au>Oral, Cagatay M.</au><au>Pumera, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>6969</spage><epage>13</epage><pages>6969-13</pages><artnum>6969</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO
2
/α-Fe
2
O
3
microrobots, consisting of peanut-shaped α-Fe
2
O
3
(hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO
2
by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H
2
O
2
fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots’ active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
Microrobot collectives promise new functions beyond individuals’ capability. Here, nature-inspired reconfigurable self-assembly of microrobots was created, driven by their photocatalytic and magnetic properties, showing potential application in water purification.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37914692</pmid><doi>10.1038/s41467-023-42674-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid><orcidid>https://orcid.org/0000-0002-3248-6725</orcidid><orcidid>https://orcid.org/0000-0001-7993-8138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-11, Vol.14 (1), p.6969-13, Article 6969 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_42c453670ee944cf84192c685e0f1c68 |
source | Publicly Available Content (ProQuest); Nature Journals; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/135 639/301/1005/1006 639/301/357/339 Active control Atomic layer epitaxy Automation Clusters Concentration gradient Degradation Dichlorophenoxyacetic acid Dipole interactions Ferric oxide Ferromagnetism Hematite Herbicides Humanities and Social Sciences Hydrogen peroxide Irradiation Light irradiation Magnetic dipoles Magnetic fields Magnetic properties Manufacturing engineering Microparticles Microrobots multidisciplinary Nanotechnology devices Persistent organic pollutants Pesticides Photocatalysis Reconfiguration Robotics Science Science (multidisciplinary) Self-assembly Swarming Swarming behavior Titanium dioxide Water purification |
title | Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconfigurable%20self-assembly%20of%20photocatalytic%20magnetic%20microrobots%20for%20water%20purification&rft.jtitle=Nature%20communications&rft.au=Urso,%20Mario&rft.date=2023-11-01&rft.volume=14&rft.issue=1&rft.spage=6969&rft.epage=13&rft.pages=6969-13&rft.artnum=6969&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-42674-9&rft_dat=%3Cproquest_doaj_%3E2884934535%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-acd72a650573c8aaca5b66bb04157f6e9982a09279d77ba598a38c5aeaca52ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884934535&rft_id=info:pmid/37914692&rfr_iscdi=true |