Loading…
Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear
Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential d...
Saved in:
Published in: | Energies (Basel) 2020-04, Vol.13 (8), p.2102 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423 |
container_end_page | |
container_issue | 8 |
container_start_page | 2102 |
container_title | Energies (Basel) |
container_volume | 13 |
creator | Tuyet-Doan, Vo-Nguyen Nguyen, Tien-Tung Nguyen, Minh-Tuan Lee, Jong-Ho Kim, Yong-Hwa |
description | Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential data, e.g., the recurrent neural network, using a long short-term memory (LSTM) has been applied for fault classification. However, the model performance is not further improved because of the lack of supporting parallel computation and the inability to recognize the relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of simultaneous computation and selective focusing on parts of the PRPD signals and a classification block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention is considered for comparison purposes. The experimental results show that the proposed method achieves performance superiority compared with the previous neural networks, whereas the model complexity is significantly reduced. |
doi_str_mv | 10.3390/en13082102 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_42cf9c7d8112447fa91cc0b5bdb71e72</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_42cf9c7d8112447fa91cc0b5bdb71e72</doaj_id><sourcerecordid>2395097178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRsGhf_AULvgmruW6Sx9JqLRQVq88hm8s2dd3UJKX4722tqPMyw3D45gynKC4guMZYgBvbQww4ggAdFQMoRF1BwPDxv_m0GKa0ArvCGGKMB8XzwnauGuVs--xDXz7YvA3xrXQhlk8qZq-6auKTXqrY2nLiVduH5FPp-3KqUjXr06ZT2ZpysfVZL1ur4nlx4lSX7PCnnxWvd7cv4_tq_jidjUfzSuMa5orwxnCqKGfOgoYIQ5ljyjnENHMUNVphSFhNODIU2dpxY5jCQNuaAoQJwmfF7MA1Qa3kOvp3FT9lUF5-L0Js5f4B3VlJkHZCM8MhRIQwpwTUGjS0MQ2Dlu1ZlwfWOoaPjU1ZrsIm9jv7EmFBgWCQ8Z3q6qDSMaQUrfu9CoHcRyD_IsBfHPl3xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395097178</pqid></control><display><type>article</type><title>Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear</title><source>Publicly Available Content Database</source><creator>Tuyet-Doan, Vo-Nguyen ; Nguyen, Tien-Tung ; Nguyen, Minh-Tuan ; Lee, Jong-Ho ; Kim, Yong-Hwa</creator><creatorcontrib>Tuyet-Doan, Vo-Nguyen ; Nguyen, Tien-Tung ; Nguyen, Minh-Tuan ; Lee, Jong-Ho ; Kim, Yong-Hwa</creatorcontrib><description>Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential data, e.g., the recurrent neural network, using a long short-term memory (LSTM) has been applied for fault classification. However, the model performance is not further improved because of the lack of supporting parallel computation and the inability to recognize the relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of simultaneous computation and selective focusing on parts of the PRPD signals and a classification block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention is considered for comparison purposes. The experimental results show that the proposed method achieves performance superiority compared with the previous neural networks, whereas the model complexity is significantly reduced.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13082102</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Advantages ; Classification ; Computation ; Electrical equipment ; Electrodes ; fault diagnosis ; gas-insulated switchgear (GIS) ; Insulation ; Long short-term memory ; long short-term memory (LSTM) ; Methods ; Neural networks ; Noise ; Onsite ; Parallel processing ; partial discharges (PDs) ; Principal components analysis ; Recurrent neural networks ; self-attention ; Sensors ; Switchgear ; Switching theory</subject><ispartof>Energies (Basel), 2020-04, Vol.13 (8), p.2102</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423</citedby><cites>FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423</cites><orcidid>0000-0003-2183-5085 ; 0000-0002-7439-1740 ; 0000-0001-7380-7591 ; 0000-0003-4152-5623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2395097178/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2395097178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Tuyet-Doan, Vo-Nguyen</creatorcontrib><creatorcontrib>Nguyen, Tien-Tung</creatorcontrib><creatorcontrib>Nguyen, Minh-Tuan</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Kim, Yong-Hwa</creatorcontrib><title>Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear</title><title>Energies (Basel)</title><description>Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential data, e.g., the recurrent neural network, using a long short-term memory (LSTM) has been applied for fault classification. However, the model performance is not further improved because of the lack of supporting parallel computation and the inability to recognize the relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of simultaneous computation and selective focusing on parts of the PRPD signals and a classification block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention is considered for comparison purposes. The experimental results show that the proposed method achieves performance superiority compared with the previous neural networks, whereas the model complexity is significantly reduced.</description><subject>Accuracy</subject><subject>Advantages</subject><subject>Classification</subject><subject>Computation</subject><subject>Electrical equipment</subject><subject>Electrodes</subject><subject>fault diagnosis</subject><subject>gas-insulated switchgear (GIS)</subject><subject>Insulation</subject><subject>Long short-term memory</subject><subject>long short-term memory (LSTM)</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Onsite</subject><subject>Parallel processing</subject><subject>partial discharges (PDs)</subject><subject>Principal components analysis</subject><subject>Recurrent neural networks</subject><subject>self-attention</subject><subject>Sensors</subject><subject>Switchgear</subject><subject>Switching theory</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRsGhf_AULvgmruW6Sx9JqLRQVq88hm8s2dd3UJKX4722tqPMyw3D45gynKC4guMZYgBvbQww4ggAdFQMoRF1BwPDxv_m0GKa0ArvCGGKMB8XzwnauGuVs--xDXz7YvA3xrXQhlk8qZq-6auKTXqrY2nLiVduH5FPp-3KqUjXr06ZT2ZpysfVZL1ur4nlx4lSX7PCnnxWvd7cv4_tq_jidjUfzSuMa5orwxnCqKGfOgoYIQ5ljyjnENHMUNVphSFhNODIU2dpxY5jCQNuaAoQJwmfF7MA1Qa3kOvp3FT9lUF5-L0Js5f4B3VlJkHZCM8MhRIQwpwTUGjS0MQ2Dlu1ZlwfWOoaPjU1ZrsIm9jv7EmFBgWCQ8Z3q6qDSMaQUrfu9CoHcRyD_IsBfHPl3xw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Tuyet-Doan, Vo-Nguyen</creator><creator>Nguyen, Tien-Tung</creator><creator>Nguyen, Minh-Tuan</creator><creator>Lee, Jong-Ho</creator><creator>Kim, Yong-Hwa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2183-5085</orcidid><orcidid>https://orcid.org/0000-0002-7439-1740</orcidid><orcidid>https://orcid.org/0000-0001-7380-7591</orcidid><orcidid>https://orcid.org/0000-0003-4152-5623</orcidid></search><sort><creationdate>20200401</creationdate><title>Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear</title><author>Tuyet-Doan, Vo-Nguyen ; Nguyen, Tien-Tung ; Nguyen, Minh-Tuan ; Lee, Jong-Ho ; Kim, Yong-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Advantages</topic><topic>Classification</topic><topic>Computation</topic><topic>Electrical equipment</topic><topic>Electrodes</topic><topic>fault diagnosis</topic><topic>gas-insulated switchgear (GIS)</topic><topic>Insulation</topic><topic>Long short-term memory</topic><topic>long short-term memory (LSTM)</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Onsite</topic><topic>Parallel processing</topic><topic>partial discharges (PDs)</topic><topic>Principal components analysis</topic><topic>Recurrent neural networks</topic><topic>self-attention</topic><topic>Sensors</topic><topic>Switchgear</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuyet-Doan, Vo-Nguyen</creatorcontrib><creatorcontrib>Nguyen, Tien-Tung</creatorcontrib><creatorcontrib>Nguyen, Minh-Tuan</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Kim, Yong-Hwa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuyet-Doan, Vo-Nguyen</au><au>Nguyen, Tien-Tung</au><au>Nguyen, Minh-Tuan</au><au>Lee, Jong-Ho</au><au>Kim, Yong-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear</atitle><jtitle>Energies (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>13</volume><issue>8</issue><spage>2102</spage><pages>2102-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential data, e.g., the recurrent neural network, using a long short-term memory (LSTM) has been applied for fault classification. However, the model performance is not further improved because of the lack of supporting parallel computation and the inability to recognize the relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of simultaneous computation and selective focusing on parts of the PRPD signals and a classification block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention is considered for comparison purposes. The experimental results show that the proposed method achieves performance superiority compared with the previous neural networks, whereas the model complexity is significantly reduced.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13082102</doi><orcidid>https://orcid.org/0000-0003-2183-5085</orcidid><orcidid>https://orcid.org/0000-0002-7439-1740</orcidid><orcidid>https://orcid.org/0000-0001-7380-7591</orcidid><orcidid>https://orcid.org/0000-0003-4152-5623</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2020-04, Vol.13 (8), p.2102 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_42cf9c7d8112447fa91cc0b5bdb71e72 |
source | Publicly Available Content Database |
subjects | Accuracy Advantages Classification Computation Electrical equipment Electrodes fault diagnosis gas-insulated switchgear (GIS) Insulation Long short-term memory long short-term memory (LSTM) Methods Neural networks Noise Onsite Parallel processing partial discharges (PDs) Principal components analysis Recurrent neural networks self-attention Sensors Switchgear Switching theory |
title | Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Attention%20Network%20for%20Partial-Discharge%20Diagnosis%20in%20Gas-Insulated%20Switchgear&rft.jtitle=Energies%20(Basel)&rft.au=Tuyet-Doan,%20Vo-Nguyen&rft.date=2020-04-01&rft.volume=13&rft.issue=8&rft.spage=2102&rft.pages=2102-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13082102&rft_dat=%3Cproquest_doaj_%3E2395097178%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2395097178&rft_id=info:pmid/&rfr_iscdi=true |