Loading…

Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear

Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential d...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-04, Vol.13 (8), p.2102
Main Authors: Tuyet-Doan, Vo-Nguyen, Nguyen, Tien-Tung, Nguyen, Minh-Tuan, Lee, Jong-Ho, Kim, Yong-Hwa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423
cites cdi_FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423
container_end_page
container_issue 8
container_start_page 2102
container_title Energies (Basel)
container_volume 13
creator Tuyet-Doan, Vo-Nguyen
Nguyen, Tien-Tung
Nguyen, Minh-Tuan
Lee, Jong-Ho
Kim, Yong-Hwa
description Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential data, e.g., the recurrent neural network, using a long short-term memory (LSTM) has been applied for fault classification. However, the model performance is not further improved because of the lack of supporting parallel computation and the inability to recognize the relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of simultaneous computation and selective focusing on parts of the PRPD signals and a classification block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention is considered for comparison purposes. The experimental results show that the proposed method achieves performance superiority compared with the previous neural networks, whereas the model complexity is significantly reduced.
doi_str_mv 10.3390/en13082102
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_42cf9c7d8112447fa91cc0b5bdb71e72</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_42cf9c7d8112447fa91cc0b5bdb71e72</doaj_id><sourcerecordid>2395097178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRsGhf_AULvgmruW6Sx9JqLRQVq88hm8s2dd3UJKX4722tqPMyw3D45gynKC4guMZYgBvbQww4ggAdFQMoRF1BwPDxv_m0GKa0ArvCGGKMB8XzwnauGuVs--xDXz7YvA3xrXQhlk8qZq-6auKTXqrY2nLiVduH5FPp-3KqUjXr06ZT2ZpysfVZL1ur4nlx4lSX7PCnnxWvd7cv4_tq_jidjUfzSuMa5orwxnCqKGfOgoYIQ5ljyjnENHMUNVphSFhNODIU2dpxY5jCQNuaAoQJwmfF7MA1Qa3kOvp3FT9lUF5-L0Js5f4B3VlJkHZCM8MhRIQwpwTUGjS0MQ2Dlu1ZlwfWOoaPjU1ZrsIm9jv7EmFBgWCQ8Z3q6qDSMaQUrfu9CoHcRyD_IsBfHPl3xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395097178</pqid></control><display><type>article</type><title>Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear</title><source>Publicly Available Content Database</source><creator>Tuyet-Doan, Vo-Nguyen ; Nguyen, Tien-Tung ; Nguyen, Minh-Tuan ; Lee, Jong-Ho ; Kim, Yong-Hwa</creator><creatorcontrib>Tuyet-Doan, Vo-Nguyen ; Nguyen, Tien-Tung ; Nguyen, Minh-Tuan ; Lee, Jong-Ho ; Kim, Yong-Hwa</creatorcontrib><description>Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential data, e.g., the recurrent neural network, using a long short-term memory (LSTM) has been applied for fault classification. However, the model performance is not further improved because of the lack of supporting parallel computation and the inability to recognize the relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of simultaneous computation and selective focusing on parts of the PRPD signals and a classification block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention is considered for comparison purposes. The experimental results show that the proposed method achieves performance superiority compared with the previous neural networks, whereas the model complexity is significantly reduced.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13082102</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Advantages ; Classification ; Computation ; Electrical equipment ; Electrodes ; fault diagnosis ; gas-insulated switchgear (GIS) ; Insulation ; Long short-term memory ; long short-term memory (LSTM) ; Methods ; Neural networks ; Noise ; Onsite ; Parallel processing ; partial discharges (PDs) ; Principal components analysis ; Recurrent neural networks ; self-attention ; Sensors ; Switchgear ; Switching theory</subject><ispartof>Energies (Basel), 2020-04, Vol.13 (8), p.2102</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423</citedby><cites>FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423</cites><orcidid>0000-0003-2183-5085 ; 0000-0002-7439-1740 ; 0000-0001-7380-7591 ; 0000-0003-4152-5623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2395097178/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2395097178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Tuyet-Doan, Vo-Nguyen</creatorcontrib><creatorcontrib>Nguyen, Tien-Tung</creatorcontrib><creatorcontrib>Nguyen, Minh-Tuan</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Kim, Yong-Hwa</creatorcontrib><title>Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear</title><title>Energies (Basel)</title><description>Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential data, e.g., the recurrent neural network, using a long short-term memory (LSTM) has been applied for fault classification. However, the model performance is not further improved because of the lack of supporting parallel computation and the inability to recognize the relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of simultaneous computation and selective focusing on parts of the PRPD signals and a classification block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention is considered for comparison purposes. The experimental results show that the proposed method achieves performance superiority compared with the previous neural networks, whereas the model complexity is significantly reduced.</description><subject>Accuracy</subject><subject>Advantages</subject><subject>Classification</subject><subject>Computation</subject><subject>Electrical equipment</subject><subject>Electrodes</subject><subject>fault diagnosis</subject><subject>gas-insulated switchgear (GIS)</subject><subject>Insulation</subject><subject>Long short-term memory</subject><subject>long short-term memory (LSTM)</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Onsite</subject><subject>Parallel processing</subject><subject>partial discharges (PDs)</subject><subject>Principal components analysis</subject><subject>Recurrent neural networks</subject><subject>self-attention</subject><subject>Sensors</subject><subject>Switchgear</subject><subject>Switching theory</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRsGhf_AULvgmruW6Sx9JqLRQVq88hm8s2dd3UJKX4722tqPMyw3D45gynKC4guMZYgBvbQww4ggAdFQMoRF1BwPDxv_m0GKa0ArvCGGKMB8XzwnauGuVs--xDXz7YvA3xrXQhlk8qZq-6auKTXqrY2nLiVduH5FPp-3KqUjXr06ZT2ZpysfVZL1ur4nlx4lSX7PCnnxWvd7cv4_tq_jidjUfzSuMa5orwxnCqKGfOgoYIQ5ljyjnENHMUNVphSFhNODIU2dpxY5jCQNuaAoQJwmfF7MA1Qa3kOvp3FT9lUF5-L0Js5f4B3VlJkHZCM8MhRIQwpwTUGjS0MQ2Dlu1ZlwfWOoaPjU1ZrsIm9jv7EmFBgWCQ8Z3q6qDSMaQUrfu9CoHcRyD_IsBfHPl3xw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Tuyet-Doan, Vo-Nguyen</creator><creator>Nguyen, Tien-Tung</creator><creator>Nguyen, Minh-Tuan</creator><creator>Lee, Jong-Ho</creator><creator>Kim, Yong-Hwa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2183-5085</orcidid><orcidid>https://orcid.org/0000-0002-7439-1740</orcidid><orcidid>https://orcid.org/0000-0001-7380-7591</orcidid><orcidid>https://orcid.org/0000-0003-4152-5623</orcidid></search><sort><creationdate>20200401</creationdate><title>Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear</title><author>Tuyet-Doan, Vo-Nguyen ; Nguyen, Tien-Tung ; Nguyen, Minh-Tuan ; Lee, Jong-Ho ; Kim, Yong-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Advantages</topic><topic>Classification</topic><topic>Computation</topic><topic>Electrical equipment</topic><topic>Electrodes</topic><topic>fault diagnosis</topic><topic>gas-insulated switchgear (GIS)</topic><topic>Insulation</topic><topic>Long short-term memory</topic><topic>long short-term memory (LSTM)</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Onsite</topic><topic>Parallel processing</topic><topic>partial discharges (PDs)</topic><topic>Principal components analysis</topic><topic>Recurrent neural networks</topic><topic>self-attention</topic><topic>Sensors</topic><topic>Switchgear</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuyet-Doan, Vo-Nguyen</creatorcontrib><creatorcontrib>Nguyen, Tien-Tung</creatorcontrib><creatorcontrib>Nguyen, Minh-Tuan</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Kim, Yong-Hwa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuyet-Doan, Vo-Nguyen</au><au>Nguyen, Tien-Tung</au><au>Nguyen, Minh-Tuan</au><au>Lee, Jong-Ho</au><au>Kim, Yong-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear</atitle><jtitle>Energies (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>13</volume><issue>8</issue><spage>2102</spage><pages>2102-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Detecting, measuring, and classifying partial discharges (PDs) are important tasks for assessing the condition of insulation systems used in different electrical equipment. Owing to the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method that processes sequential data, e.g., the recurrent neural network, using a long short-term memory (LSTM) has been applied for fault classification. However, the model performance is not further improved because of the lack of supporting parallel computation and the inability to recognize the relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of simultaneous computation and selective focusing on parts of the PRPD signals and a classification block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention is considered for comparison purposes. The experimental results show that the proposed method achieves performance superiority compared with the previous neural networks, whereas the model complexity is significantly reduced.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13082102</doi><orcidid>https://orcid.org/0000-0003-2183-5085</orcidid><orcidid>https://orcid.org/0000-0002-7439-1740</orcidid><orcidid>https://orcid.org/0000-0001-7380-7591</orcidid><orcidid>https://orcid.org/0000-0003-4152-5623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-04, Vol.13 (8), p.2102
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_42cf9c7d8112447fa91cc0b5bdb71e72
source Publicly Available Content Database
subjects Accuracy
Advantages
Classification
Computation
Electrical equipment
Electrodes
fault diagnosis
gas-insulated switchgear (GIS)
Insulation
Long short-term memory
long short-term memory (LSTM)
Methods
Neural networks
Noise
Onsite
Parallel processing
partial discharges (PDs)
Principal components analysis
Recurrent neural networks
self-attention
Sensors
Switchgear
Switching theory
title Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Attention%20Network%20for%20Partial-Discharge%20Diagnosis%20in%20Gas-Insulated%20Switchgear&rft.jtitle=Energies%20(Basel)&rft.au=Tuyet-Doan,%20Vo-Nguyen&rft.date=2020-04-01&rft.volume=13&rft.issue=8&rft.spage=2102&rft.pages=2102-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13082102&rft_dat=%3Cproquest_doaj_%3E2395097178%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-48bd85a587fe0b49d57f7aff27c7f52bca31476482d52e6f8dd7a30ce65023423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2395097178&rft_id=info:pmid/&rfr_iscdi=true