Loading…
A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection
The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-E...
Saved in:
Published in: | Cell reports (Cambridge) 2017-01, Vol.18 (3), p.816-829 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783 |
container_end_page | 829 |
container_issue | 3 |
container_start_page | 816 |
container_title | Cell reports (Cambridge) |
container_volume | 18 |
creator | Dutta, Mukta Robertson, Shelly J. Okumura, Atsushi Scott, Dana P. Chang, Jean Weiss, Jeffrey M. Sturdevant, Gail L. Feldmann, Friederike Haddock, Elaine Chiramel, Abhilash I. Ponia, Sanket S. Dougherty, Jonathan D. Katze, Michael G. Rasmussen, Angela L. Best, Sonja M. |
description | The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses.
[Display omitted]
•MAVS determines early differences in replication between WT and MA Ebola virus in mice•MAVS controls expression of IFN-I, inflammatory responses, and cell death•MAVS signaling specifically in myeloid cells is required for control of EBOV replication•MAVS has both IFN-I-dependent and -independent roles in the control of EBOV
Mitochondrial antiviral signaling protein (MAVS) is strongly implicated as critical to control the replication of Ebola virus, but the role of MAVS in vivo is not known. Dutta et al. show that MAVS signaling specifically in myeloid cells controls replication of Ebola virus through both IFN-I-dependent and -independent mechanisms. |
doi_str_mv | 10.1016/j.celrep.2016.12.069 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_42e25f6aec7c4189ab3333c17d8efe8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124716317764</els_id><doaj_id>oai_doaj_org_article_42e25f6aec7c4189ab3333c17d8efe8b</doaj_id><sourcerecordid>1861577077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783</originalsourceid><addsrcrecordid>eNp9Uk1vEzEQXSEQrUr_AUI-csnW4-6u1xekKGohUiMkAr1aXnucOtrYi70bKVd-OW7TlvbCXPwx8954_F5RfARaAoXmYltq7CMOJcunElhJG_GmOGUMYAas4m9f7E-K85S2NEdDAUT1vjhhLRWirflp8WdO1oc04i6R-TDEoPQd-YF7VH0iq_ntmqzdxqve-Q1xnqwO2AdnyAL7nFeJLKIbnVY9sSFmXHJpVF4jGQO56kKvyK2LU3qATtF5JKtgMEODJUtvUY8u-A_FO5vb4fnjelb8ur76ufg2u_n-dbmY38x0zcQ464RS2HDDFAMDwlrRGstZRQ1DbrQwnPLaWFBcVbRimtqqYrxpOwDoBG8vz4rlkdcEtZVDdDsVDzIoJx8uQtxIFfM0PcqKIatto1BzXUErVHeZQwM3LVpsu8z15cg1TN0OjUY_RtW_In2d8e5ObsJe1qwVvKaZ4PMjQQy_J0yj3LmUNe2VxzAlCW0DNc8j8VxaHUt1DClFtM9tgMp7N8itPLpB3rtBApPZDRn26eUTn0FP2v-bIQuCe4dRJu0wq2dczMrkX3H_7_AXi9zJFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861577077</pqid></control><display><type>article</type><title>A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Dutta, Mukta ; Robertson, Shelly J. ; Okumura, Atsushi ; Scott, Dana P. ; Chang, Jean ; Weiss, Jeffrey M. ; Sturdevant, Gail L. ; Feldmann, Friederike ; Haddock, Elaine ; Chiramel, Abhilash I. ; Ponia, Sanket S. ; Dougherty, Jonathan D. ; Katze, Michael G. ; Rasmussen, Angela L. ; Best, Sonja M.</creator><creatorcontrib>Dutta, Mukta ; Robertson, Shelly J. ; Okumura, Atsushi ; Scott, Dana P. ; Chang, Jean ; Weiss, Jeffrey M. ; Sturdevant, Gail L. ; Feldmann, Friederike ; Haddock, Elaine ; Chiramel, Abhilash I. ; Ponia, Sanket S. ; Dougherty, Jonathan D. ; Katze, Michael G. ; Rasmussen, Angela L. ; Best, Sonja M.</creatorcontrib><description>The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses.
[Display omitted]
•MAVS determines early differences in replication between WT and MA Ebola virus in mice•MAVS controls expression of IFN-I, inflammatory responses, and cell death•MAVS signaling specifically in myeloid cells is required for control of EBOV replication•MAVS has both IFN-I-dependent and -independent roles in the control of EBOV
Mitochondrial antiviral signaling protein (MAVS) is strongly implicated as critical to control the replication of Ebola virus, but the role of MAVS in vivo is not known. Dutta et al. show that MAVS signaling specifically in myeloid cells controls replication of Ebola virus through both IFN-I-dependent and -independent mechanisms.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2016.12.069</identifier><identifier>PMID: 28099857</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - antagonists & inhibitors ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; conditional ; DEAD Box Protein 58 - antagonists & inhibitors ; DEAD Box Protein 58 - metabolism ; Disease Models, Animal ; Ebola virus ; Ebolavirus - physiology ; Hemorrhagic Fever, Ebola - metabolism ; Hemorrhagic Fever, Ebola - mortality ; Hemorrhagic Fever, Ebola - pathology ; Humans ; interferon ; Interferon Type I - metabolism ; Kaplan-Meier Estimate ; knockout ; Liver - metabolism ; Liver - pathology ; Liver - virology ; macrophages ; Macrophages - cytology ; Macrophages - immunology ; Macrophages - metabolism ; MAVS ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mouse adapted ; Myeloid Cells - cytology ; Myeloid Cells - metabolism ; Myeloid Cells - virology ; RLR ; Signal Transduction ; Spleen - metabolism ; Spleen - pathology ; Spleen - virology ; Virus Replication</subject><ispartof>Cell reports (Cambridge), 2017-01, Vol.18 (3), p.816-829</ispartof><rights>2017</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783</citedby><cites>FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28099857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Mukta</creatorcontrib><creatorcontrib>Robertson, Shelly J.</creatorcontrib><creatorcontrib>Okumura, Atsushi</creatorcontrib><creatorcontrib>Scott, Dana P.</creatorcontrib><creatorcontrib>Chang, Jean</creatorcontrib><creatorcontrib>Weiss, Jeffrey M.</creatorcontrib><creatorcontrib>Sturdevant, Gail L.</creatorcontrib><creatorcontrib>Feldmann, Friederike</creatorcontrib><creatorcontrib>Haddock, Elaine</creatorcontrib><creatorcontrib>Chiramel, Abhilash I.</creatorcontrib><creatorcontrib>Ponia, Sanket S.</creatorcontrib><creatorcontrib>Dougherty, Jonathan D.</creatorcontrib><creatorcontrib>Katze, Michael G.</creatorcontrib><creatorcontrib>Rasmussen, Angela L.</creatorcontrib><creatorcontrib>Best, Sonja M.</creatorcontrib><title>A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses.
[Display omitted]
•MAVS determines early differences in replication between WT and MA Ebola virus in mice•MAVS controls expression of IFN-I, inflammatory responses, and cell death•MAVS signaling specifically in myeloid cells is required for control of EBOV replication•MAVS has both IFN-I-dependent and -independent roles in the control of EBOV
Mitochondrial antiviral signaling protein (MAVS) is strongly implicated as critical to control the replication of Ebola virus, but the role of MAVS in vivo is not known. Dutta et al. show that MAVS signaling specifically in myeloid cells controls replication of Ebola virus through both IFN-I-dependent and -independent mechanisms.</description><subject>Adaptor Proteins, Signal Transducing - antagonists & inhibitors</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>conditional</subject><subject>DEAD Box Protein 58 - antagonists & inhibitors</subject><subject>DEAD Box Protein 58 - metabolism</subject><subject>Disease Models, Animal</subject><subject>Ebola virus</subject><subject>Ebolavirus - physiology</subject><subject>Hemorrhagic Fever, Ebola - metabolism</subject><subject>Hemorrhagic Fever, Ebola - mortality</subject><subject>Hemorrhagic Fever, Ebola - pathology</subject><subject>Humans</subject><subject>interferon</subject><subject>Interferon Type I - metabolism</subject><subject>Kaplan-Meier Estimate</subject><subject>knockout</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver - virology</subject><subject>macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>MAVS</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mouse adapted</subject><subject>Myeloid Cells - cytology</subject><subject>Myeloid Cells - metabolism</subject><subject>Myeloid Cells - virology</subject><subject>RLR</subject><subject>Signal Transduction</subject><subject>Spleen - metabolism</subject><subject>Spleen - pathology</subject><subject>Spleen - virology</subject><subject>Virus Replication</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9Uk1vEzEQXSEQrUr_AUI-csnW4-6u1xekKGohUiMkAr1aXnucOtrYi70bKVd-OW7TlvbCXPwx8954_F5RfARaAoXmYltq7CMOJcunElhJG_GmOGUMYAas4m9f7E-K85S2NEdDAUT1vjhhLRWirflp8WdO1oc04i6R-TDEoPQd-YF7VH0iq_ntmqzdxqve-Q1xnqwO2AdnyAL7nFeJLKIbnVY9sSFmXHJpVF4jGQO56kKvyK2LU3qATtF5JKtgMEODJUtvUY8u-A_FO5vb4fnjelb8ur76ufg2u_n-dbmY38x0zcQ464RS2HDDFAMDwlrRGstZRQ1DbrQwnPLaWFBcVbRimtqqYrxpOwDoBG8vz4rlkdcEtZVDdDsVDzIoJx8uQtxIFfM0PcqKIatto1BzXUErVHeZQwM3LVpsu8z15cg1TN0OjUY_RtW_In2d8e5ObsJe1qwVvKaZ4PMjQQy_J0yj3LmUNe2VxzAlCW0DNc8j8VxaHUt1DClFtM9tgMp7N8itPLpB3rtBApPZDRn26eUTn0FP2v-bIQuCe4dRJu0wq2dczMrkX3H_7_AXi9zJFQ</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Dutta, Mukta</creator><creator>Robertson, Shelly J.</creator><creator>Okumura, Atsushi</creator><creator>Scott, Dana P.</creator><creator>Chang, Jean</creator><creator>Weiss, Jeffrey M.</creator><creator>Sturdevant, Gail L.</creator><creator>Feldmann, Friederike</creator><creator>Haddock, Elaine</creator><creator>Chiramel, Abhilash I.</creator><creator>Ponia, Sanket S.</creator><creator>Dougherty, Jonathan D.</creator><creator>Katze, Michael G.</creator><creator>Rasmussen, Angela L.</creator><creator>Best, Sonja M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170117</creationdate><title>A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection</title><author>Dutta, Mukta ; Robertson, Shelly J. ; Okumura, Atsushi ; Scott, Dana P. ; Chang, Jean ; Weiss, Jeffrey M. ; Sturdevant, Gail L. ; Feldmann, Friederike ; Haddock, Elaine ; Chiramel, Abhilash I. ; Ponia, Sanket S. ; Dougherty, Jonathan D. ; Katze, Michael G. ; Rasmussen, Angela L. ; Best, Sonja M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptor Proteins, Signal Transducing - antagonists & inhibitors</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>conditional</topic><topic>DEAD Box Protein 58 - antagonists & inhibitors</topic><topic>DEAD Box Protein 58 - metabolism</topic><topic>Disease Models, Animal</topic><topic>Ebola virus</topic><topic>Ebolavirus - physiology</topic><topic>Hemorrhagic Fever, Ebola - metabolism</topic><topic>Hemorrhagic Fever, Ebola - mortality</topic><topic>Hemorrhagic Fever, Ebola - pathology</topic><topic>Humans</topic><topic>interferon</topic><topic>Interferon Type I - metabolism</topic><topic>Kaplan-Meier Estimate</topic><topic>knockout</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver - virology</topic><topic>macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>MAVS</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mouse adapted</topic><topic>Myeloid Cells - cytology</topic><topic>Myeloid Cells - metabolism</topic><topic>Myeloid Cells - virology</topic><topic>RLR</topic><topic>Signal Transduction</topic><topic>Spleen - metabolism</topic><topic>Spleen - pathology</topic><topic>Spleen - virology</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Mukta</creatorcontrib><creatorcontrib>Robertson, Shelly J.</creatorcontrib><creatorcontrib>Okumura, Atsushi</creatorcontrib><creatorcontrib>Scott, Dana P.</creatorcontrib><creatorcontrib>Chang, Jean</creatorcontrib><creatorcontrib>Weiss, Jeffrey M.</creatorcontrib><creatorcontrib>Sturdevant, Gail L.</creatorcontrib><creatorcontrib>Feldmann, Friederike</creatorcontrib><creatorcontrib>Haddock, Elaine</creatorcontrib><creatorcontrib>Chiramel, Abhilash I.</creatorcontrib><creatorcontrib>Ponia, Sanket S.</creatorcontrib><creatorcontrib>Dougherty, Jonathan D.</creatorcontrib><creatorcontrib>Katze, Michael G.</creatorcontrib><creatorcontrib>Rasmussen, Angela L.</creatorcontrib><creatorcontrib>Best, Sonja M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Mukta</au><au>Robertson, Shelly J.</au><au>Okumura, Atsushi</au><au>Scott, Dana P.</au><au>Chang, Jean</au><au>Weiss, Jeffrey M.</au><au>Sturdevant, Gail L.</au><au>Feldmann, Friederike</au><au>Haddock, Elaine</au><au>Chiramel, Abhilash I.</au><au>Ponia, Sanket S.</au><au>Dougherty, Jonathan D.</au><au>Katze, Michael G.</au><au>Rasmussen, Angela L.</au><au>Best, Sonja M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>18</volume><issue>3</issue><spage>816</spage><epage>829</epage><pages>816-829</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses.
[Display omitted]
•MAVS determines early differences in replication between WT and MA Ebola virus in mice•MAVS controls expression of IFN-I, inflammatory responses, and cell death•MAVS signaling specifically in myeloid cells is required for control of EBOV replication•MAVS has both IFN-I-dependent and -independent roles in the control of EBOV
Mitochondrial antiviral signaling protein (MAVS) is strongly implicated as critical to control the replication of Ebola virus, but the role of MAVS in vivo is not known. Dutta et al. show that MAVS signaling specifically in myeloid cells controls replication of Ebola virus through both IFN-I-dependent and -independent mechanisms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28099857</pmid><doi>10.1016/j.celrep.2016.12.069</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2017-01, Vol.18 (3), p.816-829 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_42e25f6aec7c4189ab3333c17d8efe8b |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Adaptor Proteins, Signal Transducing - antagonists & inhibitors Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals conditional DEAD Box Protein 58 - antagonists & inhibitors DEAD Box Protein 58 - metabolism Disease Models, Animal Ebola virus Ebolavirus - physiology Hemorrhagic Fever, Ebola - metabolism Hemorrhagic Fever, Ebola - mortality Hemorrhagic Fever, Ebola - pathology Humans interferon Interferon Type I - metabolism Kaplan-Meier Estimate knockout Liver - metabolism Liver - pathology Liver - virology macrophages Macrophages - cytology Macrophages - immunology Macrophages - metabolism MAVS Mice Mice, Inbred C57BL Mice, Knockout mouse adapted Myeloid Cells - cytology Myeloid Cells - metabolism Myeloid Cells - virology RLR Signal Transduction Spleen - metabolism Spleen - pathology Spleen - virology Virus Replication |
title | A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systems%20Approach%20Reveals%20MAVS%20Signaling%20in%20Myeloid%20Cells%20as%20Critical%20for%20Resistance%20to%20Ebola%20Virus%20in%20Murine%20Models%20of%20Infection&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Dutta,%20Mukta&rft.date=2017-01-17&rft.volume=18&rft.issue=3&rft.spage=816&rft.epage=829&rft.pages=816-829&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2016.12.069&rft_dat=%3Cproquest_doaj_%3E1861577077%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1861577077&rft_id=info:pmid/28099857&rfr_iscdi=true |