Loading…

A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection

The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-E...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2017-01, Vol.18 (3), p.816-829
Main Authors: Dutta, Mukta, Robertson, Shelly J., Okumura, Atsushi, Scott, Dana P., Chang, Jean, Weiss, Jeffrey M., Sturdevant, Gail L., Feldmann, Friederike, Haddock, Elaine, Chiramel, Abhilash I., Ponia, Sanket S., Dougherty, Jonathan D., Katze, Michael G., Rasmussen, Angela L., Best, Sonja M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783
cites cdi_FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783
container_end_page 829
container_issue 3
container_start_page 816
container_title Cell reports (Cambridge)
container_volume 18
creator Dutta, Mukta
Robertson, Shelly J.
Okumura, Atsushi
Scott, Dana P.
Chang, Jean
Weiss, Jeffrey M.
Sturdevant, Gail L.
Feldmann, Friederike
Haddock, Elaine
Chiramel, Abhilash I.
Ponia, Sanket S.
Dougherty, Jonathan D.
Katze, Michael G.
Rasmussen, Angela L.
Best, Sonja M.
description The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses. [Display omitted] •MAVS determines early differences in replication between WT and MA Ebola virus in mice•MAVS controls expression of IFN-I, inflammatory responses, and cell death•MAVS signaling specifically in myeloid cells is required for control of EBOV replication•MAVS has both IFN-I-dependent and -independent roles in the control of EBOV Mitochondrial antiviral signaling protein (MAVS) is strongly implicated as critical to control the replication of Ebola virus, but the role of MAVS in vivo is not known. Dutta et al. show that MAVS signaling specifically in myeloid cells controls replication of Ebola virus through both IFN-I-dependent and -independent mechanisms.
doi_str_mv 10.1016/j.celrep.2016.12.069
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_42e25f6aec7c4189ab3333c17d8efe8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124716317764</els_id><doaj_id>oai_doaj_org_article_42e25f6aec7c4189ab3333c17d8efe8b</doaj_id><sourcerecordid>1861577077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783</originalsourceid><addsrcrecordid>eNp9Uk1vEzEQXSEQrUr_AUI-csnW4-6u1xekKGohUiMkAr1aXnucOtrYi70bKVd-OW7TlvbCXPwx8954_F5RfARaAoXmYltq7CMOJcunElhJG_GmOGUMYAas4m9f7E-K85S2NEdDAUT1vjhhLRWirflp8WdO1oc04i6R-TDEoPQd-YF7VH0iq_ntmqzdxqve-Q1xnqwO2AdnyAL7nFeJLKIbnVY9sSFmXHJpVF4jGQO56kKvyK2LU3qATtF5JKtgMEODJUtvUY8u-A_FO5vb4fnjelb8ur76ufg2u_n-dbmY38x0zcQ464RS2HDDFAMDwlrRGstZRQ1DbrQwnPLaWFBcVbRimtqqYrxpOwDoBG8vz4rlkdcEtZVDdDsVDzIoJx8uQtxIFfM0PcqKIatto1BzXUErVHeZQwM3LVpsu8z15cg1TN0OjUY_RtW_In2d8e5ObsJe1qwVvKaZ4PMjQQy_J0yj3LmUNe2VxzAlCW0DNc8j8VxaHUt1DClFtM9tgMp7N8itPLpB3rtBApPZDRn26eUTn0FP2v-bIQuCe4dRJu0wq2dczMrkX3H_7_AXi9zJFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861577077</pqid></control><display><type>article</type><title>A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Dutta, Mukta ; Robertson, Shelly J. ; Okumura, Atsushi ; Scott, Dana P. ; Chang, Jean ; Weiss, Jeffrey M. ; Sturdevant, Gail L. ; Feldmann, Friederike ; Haddock, Elaine ; Chiramel, Abhilash I. ; Ponia, Sanket S. ; Dougherty, Jonathan D. ; Katze, Michael G. ; Rasmussen, Angela L. ; Best, Sonja M.</creator><creatorcontrib>Dutta, Mukta ; Robertson, Shelly J. ; Okumura, Atsushi ; Scott, Dana P. ; Chang, Jean ; Weiss, Jeffrey M. ; Sturdevant, Gail L. ; Feldmann, Friederike ; Haddock, Elaine ; Chiramel, Abhilash I. ; Ponia, Sanket S. ; Dougherty, Jonathan D. ; Katze, Michael G. ; Rasmussen, Angela L. ; Best, Sonja M.</creatorcontrib><description>The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses. [Display omitted] •MAVS determines early differences in replication between WT and MA Ebola virus in mice•MAVS controls expression of IFN-I, inflammatory responses, and cell death•MAVS signaling specifically in myeloid cells is required for control of EBOV replication•MAVS has both IFN-I-dependent and -independent roles in the control of EBOV Mitochondrial antiviral signaling protein (MAVS) is strongly implicated as critical to control the replication of Ebola virus, but the role of MAVS in vivo is not known. Dutta et al. show that MAVS signaling specifically in myeloid cells controls replication of Ebola virus through both IFN-I-dependent and -independent mechanisms.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2016.12.069</identifier><identifier>PMID: 28099857</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; conditional ; DEAD Box Protein 58 - antagonists &amp; inhibitors ; DEAD Box Protein 58 - metabolism ; Disease Models, Animal ; Ebola virus ; Ebolavirus - physiology ; Hemorrhagic Fever, Ebola - metabolism ; Hemorrhagic Fever, Ebola - mortality ; Hemorrhagic Fever, Ebola - pathology ; Humans ; interferon ; Interferon Type I - metabolism ; Kaplan-Meier Estimate ; knockout ; Liver - metabolism ; Liver - pathology ; Liver - virology ; macrophages ; Macrophages - cytology ; Macrophages - immunology ; Macrophages - metabolism ; MAVS ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mouse adapted ; Myeloid Cells - cytology ; Myeloid Cells - metabolism ; Myeloid Cells - virology ; RLR ; Signal Transduction ; Spleen - metabolism ; Spleen - pathology ; Spleen - virology ; Virus Replication</subject><ispartof>Cell reports (Cambridge), 2017-01, Vol.18 (3), p.816-829</ispartof><rights>2017</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783</citedby><cites>FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28099857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Mukta</creatorcontrib><creatorcontrib>Robertson, Shelly J.</creatorcontrib><creatorcontrib>Okumura, Atsushi</creatorcontrib><creatorcontrib>Scott, Dana P.</creatorcontrib><creatorcontrib>Chang, Jean</creatorcontrib><creatorcontrib>Weiss, Jeffrey M.</creatorcontrib><creatorcontrib>Sturdevant, Gail L.</creatorcontrib><creatorcontrib>Feldmann, Friederike</creatorcontrib><creatorcontrib>Haddock, Elaine</creatorcontrib><creatorcontrib>Chiramel, Abhilash I.</creatorcontrib><creatorcontrib>Ponia, Sanket S.</creatorcontrib><creatorcontrib>Dougherty, Jonathan D.</creatorcontrib><creatorcontrib>Katze, Michael G.</creatorcontrib><creatorcontrib>Rasmussen, Angela L.</creatorcontrib><creatorcontrib>Best, Sonja M.</creatorcontrib><title>A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses. [Display omitted] •MAVS determines early differences in replication between WT and MA Ebola virus in mice•MAVS controls expression of IFN-I, inflammatory responses, and cell death•MAVS signaling specifically in myeloid cells is required for control of EBOV replication•MAVS has both IFN-I-dependent and -independent roles in the control of EBOV Mitochondrial antiviral signaling protein (MAVS) is strongly implicated as critical to control the replication of Ebola virus, but the role of MAVS in vivo is not known. Dutta et al. show that MAVS signaling specifically in myeloid cells controls replication of Ebola virus through both IFN-I-dependent and -independent mechanisms.</description><subject>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>conditional</subject><subject>DEAD Box Protein 58 - antagonists &amp; inhibitors</subject><subject>DEAD Box Protein 58 - metabolism</subject><subject>Disease Models, Animal</subject><subject>Ebola virus</subject><subject>Ebolavirus - physiology</subject><subject>Hemorrhagic Fever, Ebola - metabolism</subject><subject>Hemorrhagic Fever, Ebola - mortality</subject><subject>Hemorrhagic Fever, Ebola - pathology</subject><subject>Humans</subject><subject>interferon</subject><subject>Interferon Type I - metabolism</subject><subject>Kaplan-Meier Estimate</subject><subject>knockout</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver - virology</subject><subject>macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>MAVS</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mouse adapted</subject><subject>Myeloid Cells - cytology</subject><subject>Myeloid Cells - metabolism</subject><subject>Myeloid Cells - virology</subject><subject>RLR</subject><subject>Signal Transduction</subject><subject>Spleen - metabolism</subject><subject>Spleen - pathology</subject><subject>Spleen - virology</subject><subject>Virus Replication</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9Uk1vEzEQXSEQrUr_AUI-csnW4-6u1xekKGohUiMkAr1aXnucOtrYi70bKVd-OW7TlvbCXPwx8954_F5RfARaAoXmYltq7CMOJcunElhJG_GmOGUMYAas4m9f7E-K85S2NEdDAUT1vjhhLRWirflp8WdO1oc04i6R-TDEoPQd-YF7VH0iq_ntmqzdxqve-Q1xnqwO2AdnyAL7nFeJLKIbnVY9sSFmXHJpVF4jGQO56kKvyK2LU3qATtF5JKtgMEODJUtvUY8u-A_FO5vb4fnjelb8ur76ufg2u_n-dbmY38x0zcQ464RS2HDDFAMDwlrRGstZRQ1DbrQwnPLaWFBcVbRimtqqYrxpOwDoBG8vz4rlkdcEtZVDdDsVDzIoJx8uQtxIFfM0PcqKIatto1BzXUErVHeZQwM3LVpsu8z15cg1TN0OjUY_RtW_In2d8e5ObsJe1qwVvKaZ4PMjQQy_J0yj3LmUNe2VxzAlCW0DNc8j8VxaHUt1DClFtM9tgMp7N8itPLpB3rtBApPZDRn26eUTn0FP2v-bIQuCe4dRJu0wq2dczMrkX3H_7_AXi9zJFQ</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Dutta, Mukta</creator><creator>Robertson, Shelly J.</creator><creator>Okumura, Atsushi</creator><creator>Scott, Dana P.</creator><creator>Chang, Jean</creator><creator>Weiss, Jeffrey M.</creator><creator>Sturdevant, Gail L.</creator><creator>Feldmann, Friederike</creator><creator>Haddock, Elaine</creator><creator>Chiramel, Abhilash I.</creator><creator>Ponia, Sanket S.</creator><creator>Dougherty, Jonathan D.</creator><creator>Katze, Michael G.</creator><creator>Rasmussen, Angela L.</creator><creator>Best, Sonja M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170117</creationdate><title>A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection</title><author>Dutta, Mukta ; Robertson, Shelly J. ; Okumura, Atsushi ; Scott, Dana P. ; Chang, Jean ; Weiss, Jeffrey M. ; Sturdevant, Gail L. ; Feldmann, Friederike ; Haddock, Elaine ; Chiramel, Abhilash I. ; Ponia, Sanket S. ; Dougherty, Jonathan D. ; Katze, Michael G. ; Rasmussen, Angela L. ; Best, Sonja M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>conditional</topic><topic>DEAD Box Protein 58 - antagonists &amp; inhibitors</topic><topic>DEAD Box Protein 58 - metabolism</topic><topic>Disease Models, Animal</topic><topic>Ebola virus</topic><topic>Ebolavirus - physiology</topic><topic>Hemorrhagic Fever, Ebola - metabolism</topic><topic>Hemorrhagic Fever, Ebola - mortality</topic><topic>Hemorrhagic Fever, Ebola - pathology</topic><topic>Humans</topic><topic>interferon</topic><topic>Interferon Type I - metabolism</topic><topic>Kaplan-Meier Estimate</topic><topic>knockout</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver - virology</topic><topic>macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>MAVS</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mouse adapted</topic><topic>Myeloid Cells - cytology</topic><topic>Myeloid Cells - metabolism</topic><topic>Myeloid Cells - virology</topic><topic>RLR</topic><topic>Signal Transduction</topic><topic>Spleen - metabolism</topic><topic>Spleen - pathology</topic><topic>Spleen - virology</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Mukta</creatorcontrib><creatorcontrib>Robertson, Shelly J.</creatorcontrib><creatorcontrib>Okumura, Atsushi</creatorcontrib><creatorcontrib>Scott, Dana P.</creatorcontrib><creatorcontrib>Chang, Jean</creatorcontrib><creatorcontrib>Weiss, Jeffrey M.</creatorcontrib><creatorcontrib>Sturdevant, Gail L.</creatorcontrib><creatorcontrib>Feldmann, Friederike</creatorcontrib><creatorcontrib>Haddock, Elaine</creatorcontrib><creatorcontrib>Chiramel, Abhilash I.</creatorcontrib><creatorcontrib>Ponia, Sanket S.</creatorcontrib><creatorcontrib>Dougherty, Jonathan D.</creatorcontrib><creatorcontrib>Katze, Michael G.</creatorcontrib><creatorcontrib>Rasmussen, Angela L.</creatorcontrib><creatorcontrib>Best, Sonja M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Mukta</au><au>Robertson, Shelly J.</au><au>Okumura, Atsushi</au><au>Scott, Dana P.</au><au>Chang, Jean</au><au>Weiss, Jeffrey M.</au><au>Sturdevant, Gail L.</au><au>Feldmann, Friederike</au><au>Haddock, Elaine</au><au>Chiramel, Abhilash I.</au><au>Ponia, Sanket S.</au><au>Dougherty, Jonathan D.</au><au>Katze, Michael G.</au><au>Rasmussen, Angela L.</au><au>Best, Sonja M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>18</volume><issue>3</issue><spage>816</spage><epage>829</epage><pages>816-829</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The unprecedented 2013–2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS−/− mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses. [Display omitted] •MAVS determines early differences in replication between WT and MA Ebola virus in mice•MAVS controls expression of IFN-I, inflammatory responses, and cell death•MAVS signaling specifically in myeloid cells is required for control of EBOV replication•MAVS has both IFN-I-dependent and -independent roles in the control of EBOV Mitochondrial antiviral signaling protein (MAVS) is strongly implicated as critical to control the replication of Ebola virus, but the role of MAVS in vivo is not known. Dutta et al. show that MAVS signaling specifically in myeloid cells controls replication of Ebola virus through both IFN-I-dependent and -independent mechanisms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28099857</pmid><doi>10.1016/j.celrep.2016.12.069</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2017-01, Vol.18 (3), p.816-829
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_42e25f6aec7c4189ab3333c17d8efe8b
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Adaptor Proteins, Signal Transducing - antagonists & inhibitors
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
conditional
DEAD Box Protein 58 - antagonists & inhibitors
DEAD Box Protein 58 - metabolism
Disease Models, Animal
Ebola virus
Ebolavirus - physiology
Hemorrhagic Fever, Ebola - metabolism
Hemorrhagic Fever, Ebola - mortality
Hemorrhagic Fever, Ebola - pathology
Humans
interferon
Interferon Type I - metabolism
Kaplan-Meier Estimate
knockout
Liver - metabolism
Liver - pathology
Liver - virology
macrophages
Macrophages - cytology
Macrophages - immunology
Macrophages - metabolism
MAVS
Mice
Mice, Inbred C57BL
Mice, Knockout
mouse adapted
Myeloid Cells - cytology
Myeloid Cells - metabolism
Myeloid Cells - virology
RLR
Signal Transduction
Spleen - metabolism
Spleen - pathology
Spleen - virology
Virus Replication
title A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systems%20Approach%20Reveals%20MAVS%20Signaling%20in%20Myeloid%20Cells%20as%20Critical%20for%20Resistance%20to%20Ebola%20Virus%20in%20Murine%20Models%20of%20Infection&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Dutta,%20Mukta&rft.date=2017-01-17&rft.volume=18&rft.issue=3&rft.spage=816&rft.epage=829&rft.pages=816-829&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2016.12.069&rft_dat=%3Cproquest_doaj_%3E1861577077%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-b9aae67d2a21d19ff98df7240d2e7dc9d7075df1a7a4042c0f442768b111b9783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1861577077&rft_id=info:pmid/28099857&rfr_iscdi=true