Loading…

Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley

Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentin...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2024-04, Vol.15 (4), p.731
Main Authors: Liu, Zihao, Huang, Tianbao, Zhang, Xiaoli, Wu, Yong, Xu, Xiongwei, Wang, Zhenhui, Zou, Fuyan, Zhang, Chen, Xu, Can, Ou, Guanglong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3
container_end_page
container_issue 4
container_start_page 731
container_title Forests
container_volume 15
creator Liu, Zihao
Huang, Tianbao
Zhang, Xiaoli
Wu, Yong
Xu, Xiongwei
Wang, Zhenhui
Zou, Fuyan
Zhang, Chen
Xu, Can
Ou, Guanglong
description Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentinel-1A, Sentinel-2A, and Gaofen-2 satellites were utilized to estimate the forest AGB in Yuanmou County, Yunnan Province, China. Different combinations of image data, based on selected variables of stepwise regression and their performance in constructing linear stepwise regression (LSR) and random forest (RF) models, were explored. The results showed that: (1) after adding the polarized values of the synthetic aperture radar backscatter coefficients, the combination fitting effect was significantly improved; (2) the fitting effect of the Sentinel-1A + Sentinel-2A + Gaofen-2 data combination was superior to the other combinations, indicating that the effective extraction of forest horizon and vertical information can improve the estimation effect of the forest AGB; and (3) the RF model exhibited superior fitting performance compared to the LSR model across all permutations of remotely sensed image datasets, with R2 values of 0.71 and 0.65, and RMSE values of 30.67 and 33.79 Mg/ha, respectively. These findings lay the groundwork for enhancing the precision of AGB estimation in dry-hot valley areas by integrating Sentinel-2A, Sentinel-1A, and GF-2 imagery, providing valuable insights for future research and applications.
doi_str_mv 10.3390/f15040731
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4308e7e164af421a821d23f1cebb07c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793378980</galeid><doaj_id>oai_doaj_org_article_4308e7e164af421a821d23f1cebb07c3</doaj_id><sourcerecordid>A793378980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3</originalsourceid><addsrcrecordid>eNpNUc1u1DAQjioqtSo98AaWOCGR1o6T2D6G0m1XqsShwNVynHHwKmsX24uUZ-ClGbpohecwP57vm7-qesfoDeeK3jrW0ZYKzs6qS6aUqltFxZv_7IvqOucdxdcJqZr2svq9DQWSscWHmTxDQA1L3QwfTw5h6JgwkYdN3ZDt3syQVlIimi8p_gJSfgAZrD0gy0qiI5uYIBcyjPg5p3hA6Ccf9yZncp-L35viYyA-EEM-p7V-jIV8N8sC69vq3Jklw_U_fVV929x_vXusn748bO-Gp9ryTpR6AtVbZkbXsMlBP1IxChxQCDlNRtGOGdZzNblRWi6YY9BxY1lvG-mgGx3wq2p75J2i2emXhC2lVUfj9WsgplmbVLxdQLecShDA-ta4tmFGYs2GO2ZhxLqWI9f7Ixfu4ucB59a7eEgB29ectr1UXaskZt0cs2aDpD64WHBbKBPsvY0BnMf4IBTneBdJEfDhCLAp5pzAndpkVP-9tT7dmv8B0_aaNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046895498</pqid></control><display><type>article</type><title>Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley</title><source>Publicly Available Content Database</source><creator>Liu, Zihao ; Huang, Tianbao ; Zhang, Xiaoli ; Wu, Yong ; Xu, Xiongwei ; Wang, Zhenhui ; Zou, Fuyan ; Zhang, Chen ; Xu, Can ; Ou, Guanglong</creator><creatorcontrib>Liu, Zihao ; Huang, Tianbao ; Zhang, Xiaoli ; Wu, Yong ; Xu, Xiongwei ; Wang, Zhenhui ; Zou, Fuyan ; Zhang, Chen ; Xu, Can ; Ou, Guanglong</creatorcontrib><description>Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentinel-1A, Sentinel-2A, and Gaofen-2 satellites were utilized to estimate the forest AGB in Yuanmou County, Yunnan Province, China. Different combinations of image data, based on selected variables of stepwise regression and their performance in constructing linear stepwise regression (LSR) and random forest (RF) models, were explored. The results showed that: (1) after adding the polarized values of the synthetic aperture radar backscatter coefficients, the combination fitting effect was significantly improved; (2) the fitting effect of the Sentinel-1A + Sentinel-2A + Gaofen-2 data combination was superior to the other combinations, indicating that the effective extraction of forest horizon and vertical information can improve the estimation effect of the forest AGB; and (3) the RF model exhibited superior fitting performance compared to the LSR model across all permutations of remotely sensed image datasets, with R2 values of 0.71 and 0.65, and RMSE values of 30.67 and 33.79 Mg/ha, respectively. These findings lay the groundwork for enhancing the precision of AGB estimation in dry-hot valley areas by integrating Sentinel-2A, Sentinel-1A, and GF-2 imagery, providing valuable insights for future research and applications.</description><identifier>ISSN: 1999-4907</identifier><identifier>EISSN: 1999-4907</identifier><identifier>DOI: 10.3390/f15040731</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aboveground biomass ; Accuracy ; Algorithms ; Biomass ; Carbon ; China ; Climate change ; Climate change mitigation ; Datasets ; dry-hot valley ; Environmental aspects ; Estimates ; Forest biomass ; Forests and forestry ; GF-2 ; Measurement ; Methods ; Permutations ; Regression analysis ; Remote sensing ; Satellite imagery ; Satellite imaging ; Satellites ; Sentinel-1A ; Sentinel-2A ; Synthetic aperture radar ; Valleys ; Variables ; Vegetation</subject><ispartof>Forests, 2024-04, Vol.15 (4), p.731</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3</cites><orcidid>0000-0003-1925-6690 ; 0000-0001-6343-4218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046895498/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046895498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Liu, Zihao</creatorcontrib><creatorcontrib>Huang, Tianbao</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Wu, Yong</creatorcontrib><creatorcontrib>Xu, Xiongwei</creatorcontrib><creatorcontrib>Wang, Zhenhui</creatorcontrib><creatorcontrib>Zou, Fuyan</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Xu, Can</creatorcontrib><creatorcontrib>Ou, Guanglong</creatorcontrib><title>Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley</title><title>Forests</title><description>Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentinel-1A, Sentinel-2A, and Gaofen-2 satellites were utilized to estimate the forest AGB in Yuanmou County, Yunnan Province, China. Different combinations of image data, based on selected variables of stepwise regression and their performance in constructing linear stepwise regression (LSR) and random forest (RF) models, were explored. The results showed that: (1) after adding the polarized values of the synthetic aperture radar backscatter coefficients, the combination fitting effect was significantly improved; (2) the fitting effect of the Sentinel-1A + Sentinel-2A + Gaofen-2 data combination was superior to the other combinations, indicating that the effective extraction of forest horizon and vertical information can improve the estimation effect of the forest AGB; and (3) the RF model exhibited superior fitting performance compared to the LSR model across all permutations of remotely sensed image datasets, with R2 values of 0.71 and 0.65, and RMSE values of 30.67 and 33.79 Mg/ha, respectively. These findings lay the groundwork for enhancing the precision of AGB estimation in dry-hot valley areas by integrating Sentinel-2A, Sentinel-1A, and GF-2 imagery, providing valuable insights for future research and applications.</description><subject>aboveground biomass</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biomass</subject><subject>Carbon</subject><subject>China</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Datasets</subject><subject>dry-hot valley</subject><subject>Environmental aspects</subject><subject>Estimates</subject><subject>Forest biomass</subject><subject>Forests and forestry</subject><subject>GF-2</subject><subject>Measurement</subject><subject>Methods</subject><subject>Permutations</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellite imaging</subject><subject>Satellites</subject><subject>Sentinel-1A</subject><subject>Sentinel-2A</subject><subject>Synthetic aperture radar</subject><subject>Valleys</subject><subject>Variables</subject><subject>Vegetation</subject><issn>1999-4907</issn><issn>1999-4907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUc1u1DAQjioqtSo98AaWOCGR1o6T2D6G0m1XqsShwNVynHHwKmsX24uUZ-ClGbpohecwP57vm7-qesfoDeeK3jrW0ZYKzs6qS6aUqltFxZv_7IvqOucdxdcJqZr2svq9DQWSscWHmTxDQA1L3QwfTw5h6JgwkYdN3ZDt3syQVlIimi8p_gJSfgAZrD0gy0qiI5uYIBcyjPg5p3hA6Ccf9yZncp-L35viYyA-EEM-p7V-jIV8N8sC69vq3Jklw_U_fVV929x_vXusn748bO-Gp9ryTpR6AtVbZkbXsMlBP1IxChxQCDlNRtGOGdZzNblRWi6YY9BxY1lvG-mgGx3wq2p75J2i2emXhC2lVUfj9WsgplmbVLxdQLecShDA-ta4tmFGYs2GO2ZhxLqWI9f7Ixfu4ucB59a7eEgB29ectr1UXaskZt0cs2aDpD64WHBbKBPsvY0BnMf4IBTneBdJEfDhCLAp5pzAndpkVP-9tT7dmv8B0_aaNg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Zihao</creator><creator>Huang, Tianbao</creator><creator>Zhang, Xiaoli</creator><creator>Wu, Yong</creator><creator>Xu, Xiongwei</creator><creator>Wang, Zhenhui</creator><creator>Zou, Fuyan</creator><creator>Zhang, Chen</creator><creator>Xu, Can</creator><creator>Ou, Guanglong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1925-6690</orcidid><orcidid>https://orcid.org/0000-0001-6343-4218</orcidid></search><sort><creationdate>20240401</creationdate><title>Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley</title><author>Liu, Zihao ; Huang, Tianbao ; Zhang, Xiaoli ; Wu, Yong ; Xu, Xiongwei ; Wang, Zhenhui ; Zou, Fuyan ; Zhang, Chen ; Xu, Can ; Ou, Guanglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aboveground biomass</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biomass</topic><topic>Carbon</topic><topic>China</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Datasets</topic><topic>dry-hot valley</topic><topic>Environmental aspects</topic><topic>Estimates</topic><topic>Forest biomass</topic><topic>Forests and forestry</topic><topic>GF-2</topic><topic>Measurement</topic><topic>Methods</topic><topic>Permutations</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellite imaging</topic><topic>Satellites</topic><topic>Sentinel-1A</topic><topic>Sentinel-2A</topic><topic>Synthetic aperture radar</topic><topic>Valleys</topic><topic>Variables</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zihao</creatorcontrib><creatorcontrib>Huang, Tianbao</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Wu, Yong</creatorcontrib><creatorcontrib>Xu, Xiongwei</creatorcontrib><creatorcontrib>Wang, Zhenhui</creatorcontrib><creatorcontrib>Zou, Fuyan</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Xu, Can</creatorcontrib><creatorcontrib>Ou, Guanglong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zihao</au><au>Huang, Tianbao</au><au>Zhang, Xiaoli</au><au>Wu, Yong</au><au>Xu, Xiongwei</au><au>Wang, Zhenhui</au><au>Zou, Fuyan</au><au>Zhang, Chen</au><au>Xu, Can</au><au>Ou, Guanglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley</atitle><jtitle>Forests</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>731</spage><pages>731-</pages><issn>1999-4907</issn><eissn>1999-4907</eissn><abstract>Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentinel-1A, Sentinel-2A, and Gaofen-2 satellites were utilized to estimate the forest AGB in Yuanmou County, Yunnan Province, China. Different combinations of image data, based on selected variables of stepwise regression and their performance in constructing linear stepwise regression (LSR) and random forest (RF) models, were explored. The results showed that: (1) after adding the polarized values of the synthetic aperture radar backscatter coefficients, the combination fitting effect was significantly improved; (2) the fitting effect of the Sentinel-1A + Sentinel-2A + Gaofen-2 data combination was superior to the other combinations, indicating that the effective extraction of forest horizon and vertical information can improve the estimation effect of the forest AGB; and (3) the RF model exhibited superior fitting performance compared to the LSR model across all permutations of remotely sensed image datasets, with R2 values of 0.71 and 0.65, and RMSE values of 30.67 and 33.79 Mg/ha, respectively. These findings lay the groundwork for enhancing the precision of AGB estimation in dry-hot valley areas by integrating Sentinel-2A, Sentinel-1A, and GF-2 imagery, providing valuable insights for future research and applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/f15040731</doi><orcidid>https://orcid.org/0000-0003-1925-6690</orcidid><orcidid>https://orcid.org/0000-0001-6343-4218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4907
ispartof Forests, 2024-04, Vol.15 (4), p.731
issn 1999-4907
1999-4907
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4308e7e164af421a821d23f1cebb07c3
source Publicly Available Content Database
subjects aboveground biomass
Accuracy
Algorithms
Biomass
Carbon
China
Climate change
Climate change mitigation
Datasets
dry-hot valley
Environmental aspects
Estimates
Forest biomass
Forests and forestry
GF-2
Measurement
Methods
Permutations
Regression analysis
Remote sensing
Satellite imagery
Satellite imaging
Satellites
Sentinel-1A
Sentinel-2A
Synthetic aperture radar
Valleys
Variables
Vegetation
title Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interacting%20Sentinel-2A,%20Sentinel%201A,%20and%20GF-2%20Imagery%20to%20Improve%20the%20Accuracy%20of%20Forest%20Aboveground%20Biomass%20Estimation%20in%20a%20Dry-Hot%20Valley&rft.jtitle=Forests&rft.au=Liu,%20Zihao&rft.date=2024-04-01&rft.volume=15&rft.issue=4&rft.spage=731&rft.pages=731-&rft.issn=1999-4907&rft.eissn=1999-4907&rft_id=info:doi/10.3390/f15040731&rft_dat=%3Cgale_doaj_%3EA793378980%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046895498&rft_id=info:pmid/&rft_galeid=A793378980&rfr_iscdi=true