Loading…
Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley
Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentin...
Saved in:
Published in: | Forests 2024-04, Vol.15 (4), p.731 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3 |
container_end_page | |
container_issue | 4 |
container_start_page | 731 |
container_title | Forests |
container_volume | 15 |
creator | Liu, Zihao Huang, Tianbao Zhang, Xiaoli Wu, Yong Xu, Xiongwei Wang, Zhenhui Zou, Fuyan Zhang, Chen Xu, Can Ou, Guanglong |
description | Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentinel-1A, Sentinel-2A, and Gaofen-2 satellites were utilized to estimate the forest AGB in Yuanmou County, Yunnan Province, China. Different combinations of image data, based on selected variables of stepwise regression and their performance in constructing linear stepwise regression (LSR) and random forest (RF) models, were explored. The results showed that: (1) after adding the polarized values of the synthetic aperture radar backscatter coefficients, the combination fitting effect was significantly improved; (2) the fitting effect of the Sentinel-1A + Sentinel-2A + Gaofen-2 data combination was superior to the other combinations, indicating that the effective extraction of forest horizon and vertical information can improve the estimation effect of the forest AGB; and (3) the RF model exhibited superior fitting performance compared to the LSR model across all permutations of remotely sensed image datasets, with R2 values of 0.71 and 0.65, and RMSE values of 30.67 and 33.79 Mg/ha, respectively. These findings lay the groundwork for enhancing the precision of AGB estimation in dry-hot valley areas by integrating Sentinel-2A, Sentinel-1A, and GF-2 imagery, providing valuable insights for future research and applications. |
doi_str_mv | 10.3390/f15040731 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4308e7e164af421a821d23f1cebb07c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793378980</galeid><doaj_id>oai_doaj_org_article_4308e7e164af421a821d23f1cebb07c3</doaj_id><sourcerecordid>A793378980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3</originalsourceid><addsrcrecordid>eNpNUc1u1DAQjioqtSo98AaWOCGR1o6T2D6G0m1XqsShwNVynHHwKmsX24uUZ-ClGbpohecwP57vm7-qesfoDeeK3jrW0ZYKzs6qS6aUqltFxZv_7IvqOucdxdcJqZr2svq9DQWSscWHmTxDQA1L3QwfTw5h6JgwkYdN3ZDt3syQVlIimi8p_gJSfgAZrD0gy0qiI5uYIBcyjPg5p3hA6Ccf9yZncp-L35viYyA-EEM-p7V-jIV8N8sC69vq3Jklw_U_fVV929x_vXusn748bO-Gp9ryTpR6AtVbZkbXsMlBP1IxChxQCDlNRtGOGdZzNblRWi6YY9BxY1lvG-mgGx3wq2p75J2i2emXhC2lVUfj9WsgplmbVLxdQLecShDA-ta4tmFGYs2GO2ZhxLqWI9f7Ixfu4ucB59a7eEgB29ectr1UXaskZt0cs2aDpD64WHBbKBPsvY0BnMf4IBTneBdJEfDhCLAp5pzAndpkVP-9tT7dmv8B0_aaNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046895498</pqid></control><display><type>article</type><title>Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley</title><source>Publicly Available Content Database</source><creator>Liu, Zihao ; Huang, Tianbao ; Zhang, Xiaoli ; Wu, Yong ; Xu, Xiongwei ; Wang, Zhenhui ; Zou, Fuyan ; Zhang, Chen ; Xu, Can ; Ou, Guanglong</creator><creatorcontrib>Liu, Zihao ; Huang, Tianbao ; Zhang, Xiaoli ; Wu, Yong ; Xu, Xiongwei ; Wang, Zhenhui ; Zou, Fuyan ; Zhang, Chen ; Xu, Can ; Ou, Guanglong</creatorcontrib><description>Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentinel-1A, Sentinel-2A, and Gaofen-2 satellites were utilized to estimate the forest AGB in Yuanmou County, Yunnan Province, China. Different combinations of image data, based on selected variables of stepwise regression and their performance in constructing linear stepwise regression (LSR) and random forest (RF) models, were explored. The results showed that: (1) after adding the polarized values of the synthetic aperture radar backscatter coefficients, the combination fitting effect was significantly improved; (2) the fitting effect of the Sentinel-1A + Sentinel-2A + Gaofen-2 data combination was superior to the other combinations, indicating that the effective extraction of forest horizon and vertical information can improve the estimation effect of the forest AGB; and (3) the RF model exhibited superior fitting performance compared to the LSR model across all permutations of remotely sensed image datasets, with R2 values of 0.71 and 0.65, and RMSE values of 30.67 and 33.79 Mg/ha, respectively. These findings lay the groundwork for enhancing the precision of AGB estimation in dry-hot valley areas by integrating Sentinel-2A, Sentinel-1A, and GF-2 imagery, providing valuable insights for future research and applications.</description><identifier>ISSN: 1999-4907</identifier><identifier>EISSN: 1999-4907</identifier><identifier>DOI: 10.3390/f15040731</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aboveground biomass ; Accuracy ; Algorithms ; Biomass ; Carbon ; China ; Climate change ; Climate change mitigation ; Datasets ; dry-hot valley ; Environmental aspects ; Estimates ; Forest biomass ; Forests and forestry ; GF-2 ; Measurement ; Methods ; Permutations ; Regression analysis ; Remote sensing ; Satellite imagery ; Satellite imaging ; Satellites ; Sentinel-1A ; Sentinel-2A ; Synthetic aperture radar ; Valleys ; Variables ; Vegetation</subject><ispartof>Forests, 2024-04, Vol.15 (4), p.731</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3</cites><orcidid>0000-0003-1925-6690 ; 0000-0001-6343-4218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046895498/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046895498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Liu, Zihao</creatorcontrib><creatorcontrib>Huang, Tianbao</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Wu, Yong</creatorcontrib><creatorcontrib>Xu, Xiongwei</creatorcontrib><creatorcontrib>Wang, Zhenhui</creatorcontrib><creatorcontrib>Zou, Fuyan</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Xu, Can</creatorcontrib><creatorcontrib>Ou, Guanglong</creatorcontrib><title>Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley</title><title>Forests</title><description>Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentinel-1A, Sentinel-2A, and Gaofen-2 satellites were utilized to estimate the forest AGB in Yuanmou County, Yunnan Province, China. Different combinations of image data, based on selected variables of stepwise regression and their performance in constructing linear stepwise regression (LSR) and random forest (RF) models, were explored. The results showed that: (1) after adding the polarized values of the synthetic aperture radar backscatter coefficients, the combination fitting effect was significantly improved; (2) the fitting effect of the Sentinel-1A + Sentinel-2A + Gaofen-2 data combination was superior to the other combinations, indicating that the effective extraction of forest horizon and vertical information can improve the estimation effect of the forest AGB; and (3) the RF model exhibited superior fitting performance compared to the LSR model across all permutations of remotely sensed image datasets, with R2 values of 0.71 and 0.65, and RMSE values of 30.67 and 33.79 Mg/ha, respectively. These findings lay the groundwork for enhancing the precision of AGB estimation in dry-hot valley areas by integrating Sentinel-2A, Sentinel-1A, and GF-2 imagery, providing valuable insights for future research and applications.</description><subject>aboveground biomass</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biomass</subject><subject>Carbon</subject><subject>China</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Datasets</subject><subject>dry-hot valley</subject><subject>Environmental aspects</subject><subject>Estimates</subject><subject>Forest biomass</subject><subject>Forests and forestry</subject><subject>GF-2</subject><subject>Measurement</subject><subject>Methods</subject><subject>Permutations</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellite imaging</subject><subject>Satellites</subject><subject>Sentinel-1A</subject><subject>Sentinel-2A</subject><subject>Synthetic aperture radar</subject><subject>Valleys</subject><subject>Variables</subject><subject>Vegetation</subject><issn>1999-4907</issn><issn>1999-4907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUc1u1DAQjioqtSo98AaWOCGR1o6T2D6G0m1XqsShwNVynHHwKmsX24uUZ-ClGbpohecwP57vm7-qesfoDeeK3jrW0ZYKzs6qS6aUqltFxZv_7IvqOucdxdcJqZr2svq9DQWSscWHmTxDQA1L3QwfTw5h6JgwkYdN3ZDt3syQVlIimi8p_gJSfgAZrD0gy0qiI5uYIBcyjPg5p3hA6Ccf9yZncp-L35viYyA-EEM-p7V-jIV8N8sC69vq3Jklw_U_fVV929x_vXusn748bO-Gp9ryTpR6AtVbZkbXsMlBP1IxChxQCDlNRtGOGdZzNblRWi6YY9BxY1lvG-mgGx3wq2p75J2i2emXhC2lVUfj9WsgplmbVLxdQLecShDA-ta4tmFGYs2GO2ZhxLqWI9f7Ixfu4ucB59a7eEgB29ectr1UXaskZt0cs2aDpD64WHBbKBPsvY0BnMf4IBTneBdJEfDhCLAp5pzAndpkVP-9tT7dmv8B0_aaNg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Zihao</creator><creator>Huang, Tianbao</creator><creator>Zhang, Xiaoli</creator><creator>Wu, Yong</creator><creator>Xu, Xiongwei</creator><creator>Wang, Zhenhui</creator><creator>Zou, Fuyan</creator><creator>Zhang, Chen</creator><creator>Xu, Can</creator><creator>Ou, Guanglong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1925-6690</orcidid><orcidid>https://orcid.org/0000-0001-6343-4218</orcidid></search><sort><creationdate>20240401</creationdate><title>Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley</title><author>Liu, Zihao ; Huang, Tianbao ; Zhang, Xiaoli ; Wu, Yong ; Xu, Xiongwei ; Wang, Zhenhui ; Zou, Fuyan ; Zhang, Chen ; Xu, Can ; Ou, Guanglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aboveground biomass</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biomass</topic><topic>Carbon</topic><topic>China</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Datasets</topic><topic>dry-hot valley</topic><topic>Environmental aspects</topic><topic>Estimates</topic><topic>Forest biomass</topic><topic>Forests and forestry</topic><topic>GF-2</topic><topic>Measurement</topic><topic>Methods</topic><topic>Permutations</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellite imaging</topic><topic>Satellites</topic><topic>Sentinel-1A</topic><topic>Sentinel-2A</topic><topic>Synthetic aperture radar</topic><topic>Valleys</topic><topic>Variables</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zihao</creatorcontrib><creatorcontrib>Huang, Tianbao</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><creatorcontrib>Wu, Yong</creatorcontrib><creatorcontrib>Xu, Xiongwei</creatorcontrib><creatorcontrib>Wang, Zhenhui</creatorcontrib><creatorcontrib>Zou, Fuyan</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Xu, Can</creatorcontrib><creatorcontrib>Ou, Guanglong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zihao</au><au>Huang, Tianbao</au><au>Zhang, Xiaoli</au><au>Wu, Yong</au><au>Xu, Xiongwei</au><au>Wang, Zhenhui</au><au>Zou, Fuyan</au><au>Zhang, Chen</au><au>Xu, Can</au><au>Ou, Guanglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley</atitle><jtitle>Forests</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>731</spage><pages>731-</pages><issn>1999-4907</issn><eissn>1999-4907</eissn><abstract>Carbon absorption and storage in forests is one of the important ways to mitigate climate change. Therefore, it is essential to use a variety of remote-sensing resources to accurately estimate forest aboveground biomass (AGB) in dry-hot valley regions. In this study, satellite images from the Sentinel-1A, Sentinel-2A, and Gaofen-2 satellites were utilized to estimate the forest AGB in Yuanmou County, Yunnan Province, China. Different combinations of image data, based on selected variables of stepwise regression and their performance in constructing linear stepwise regression (LSR) and random forest (RF) models, were explored. The results showed that: (1) after adding the polarized values of the synthetic aperture radar backscatter coefficients, the combination fitting effect was significantly improved; (2) the fitting effect of the Sentinel-1A + Sentinel-2A + Gaofen-2 data combination was superior to the other combinations, indicating that the effective extraction of forest horizon and vertical information can improve the estimation effect of the forest AGB; and (3) the RF model exhibited superior fitting performance compared to the LSR model across all permutations of remotely sensed image datasets, with R2 values of 0.71 and 0.65, and RMSE values of 30.67 and 33.79 Mg/ha, respectively. These findings lay the groundwork for enhancing the precision of AGB estimation in dry-hot valley areas by integrating Sentinel-2A, Sentinel-1A, and GF-2 imagery, providing valuable insights for future research and applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/f15040731</doi><orcidid>https://orcid.org/0000-0003-1925-6690</orcidid><orcidid>https://orcid.org/0000-0001-6343-4218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-4907 |
ispartof | Forests, 2024-04, Vol.15 (4), p.731 |
issn | 1999-4907 1999-4907 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4308e7e164af421a821d23f1cebb07c3 |
source | Publicly Available Content Database |
subjects | aboveground biomass Accuracy Algorithms Biomass Carbon China Climate change Climate change mitigation Datasets dry-hot valley Environmental aspects Estimates Forest biomass Forests and forestry GF-2 Measurement Methods Permutations Regression analysis Remote sensing Satellite imagery Satellite imaging Satellites Sentinel-1A Sentinel-2A Synthetic aperture radar Valleys Variables Vegetation |
title | Interacting Sentinel-2A, Sentinel 1A, and GF-2 Imagery to Improve the Accuracy of Forest Aboveground Biomass Estimation in a Dry-Hot Valley |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interacting%20Sentinel-2A,%20Sentinel%201A,%20and%20GF-2%20Imagery%20to%20Improve%20the%20Accuracy%20of%20Forest%20Aboveground%20Biomass%20Estimation%20in%20a%20Dry-Hot%20Valley&rft.jtitle=Forests&rft.au=Liu,%20Zihao&rft.date=2024-04-01&rft.volume=15&rft.issue=4&rft.spage=731&rft.pages=731-&rft.issn=1999-4907&rft.eissn=1999-4907&rft_id=info:doi/10.3390/f15040731&rft_dat=%3Cgale_doaj_%3EA793378980%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-de96c1abf21dfe6b07b7999778dda9051a1639dfb8c371f1e53ac16c28fe5bfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046895498&rft_id=info:pmid/&rft_galeid=A793378980&rfr_iscdi=true |