Loading…

Classification of Neisseria meningitidis genomes with a bag-of-words approach and machine learning

Whole genome sequencing of bacteria is important to enable strain classification. Using entire genomes as an input to machine learning (ML) models would allow rapid classification of strains while using information from multiple genetic elements. We developed a “bag-of-words” approach to encode, usi...

Full description

Saved in:
Bibliographic Details
Published in:iScience 2024-03, Vol.27 (3), p.109257, Article 109257
Main Authors: Podda, Marco, Bonechi, Simone, Palladino, Andrea, Scaramuzzino, Mattia, Brozzi, Alessandro, Roma, Guglielmo, Muzzi, Alessandro, Priami, Corrado, Sîrbu, Alina, Bodini, Margherita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c473t-38891d8e5ff43179b8e663ed789730b85fde2d379d3578a16d3f6167abc618813
container_end_page
container_issue 3
container_start_page 109257
container_title iScience
container_volume 27
creator Podda, Marco
Bonechi, Simone
Palladino, Andrea
Scaramuzzino, Mattia
Brozzi, Alessandro
Roma, Guglielmo
Muzzi, Alessandro
Priami, Corrado
Sîrbu, Alina
Bodini, Margherita
description Whole genome sequencing of bacteria is important to enable strain classification. Using entire genomes as an input to machine learning (ML) models would allow rapid classification of strains while using information from multiple genetic elements. We developed a “bag-of-words” approach to encode, using SentencePiece or k-mer tokenization, entire bacterial genomes and analyze these with ML. Initial model selection identified SentencePiece with 8,000 and 32,000 words as the best approach for genome tokenization. We then classified in Neisseria meningitidis genomes the capsule B group genotype with 99.6% accuracy and the multifactor invasive phenotype with 90.2% accuracy, in an independent test set. Subsequently, in silico knockouts of 2,808 genes confirmed that the ML model predictions aligned with our current understanding of the underlying biology. To our knowledge, this is the first ML method using entire bacterial genomes to classify strains and identify genes considered relevant by the classifier. [Display omitted] •We recoded bacterial genomes as words and classified them using machine learning•We tested the approach by predicting the type of bacterial capsule and invasiveness•Predictions were accurate: 99.6% for bacterial capsule type, 90.2% for invasiveness•This can improve tasks like monitoring antibiotic resistance and disease outbreaks Microbial genomics; Classification of bioinformatical subject; Machine learning
doi_str_mv 10.1016/j.isci.2024.109257
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4313af5a770c4ed68e5f8934277fd0ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589004224004784</els_id><doaj_id>oai_doaj_org_article_4313af5a770c4ed68e5f8934277fd0ef</doaj_id><sourcerecordid>2937704346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-38891d8e5ff43179b8e663ed789730b85fde2d379d3578a16d3f6167abc618813</originalsourceid><addsrcrecordid>eNp9kVtrFTEUhQdRbKn9Az5IHn2ZY26TCwgiBy-Foi_6HDLJzjSHmckxmdPivzfj1NK-CIFsdtb-VtiraV4TvCOYiHeHXSwu7iimvDY07eSz5px2SrcYc_r8UX3WXJZywBjTergWL5szpjjTWtDzpt-PtpQYorNLTDNKAX2DWArkaNEEc5yHuEQfCxpgThMUdBeXG2RRb4c2hfYuZV-QPR5zsq72Z4-mWsQZ0Ag2r_OvmhfBjgUu7--L5ufnTz_2X9vr71-u9h-vW8clW1qmlCZeQRcCZ0TqXoEQDLxUWjLcqy54oJ5J7VknlSXCsyCIkLZ3gihF2EVztXF9sgdzzHGy-bdJNpq_jZQHY_MS3QimGjAbOisldhy8WF2VZpxKGTyGUFkfNtbx1E_gHcxLtuMT6NOXOd6YId2aGgXBVPNKeHtPyOnXCcpiphoYjKOdIZ2KoZpVd864qFK6SV1OpWQIDz4EmzVsczBr2GYN22xh16E3j3_4MPIv2ip4vwmg7vw2QjYVAbMDHzO4pS4l_o__BzRZu7U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937704346</pqid></control><display><type>article</type><title>Classification of Neisseria meningitidis genomes with a bag-of-words approach and machine learning</title><source>PubMed (Medline)</source><source>ScienceDirect Journals</source><creator>Podda, Marco ; Bonechi, Simone ; Palladino, Andrea ; Scaramuzzino, Mattia ; Brozzi, Alessandro ; Roma, Guglielmo ; Muzzi, Alessandro ; Priami, Corrado ; Sîrbu, Alina ; Bodini, Margherita</creator><creatorcontrib>Podda, Marco ; Bonechi, Simone ; Palladino, Andrea ; Scaramuzzino, Mattia ; Brozzi, Alessandro ; Roma, Guglielmo ; Muzzi, Alessandro ; Priami, Corrado ; Sîrbu, Alina ; Bodini, Margherita</creatorcontrib><description>Whole genome sequencing of bacteria is important to enable strain classification. Using entire genomes as an input to machine learning (ML) models would allow rapid classification of strains while using information from multiple genetic elements. We developed a “bag-of-words” approach to encode, using SentencePiece or k-mer tokenization, entire bacterial genomes and analyze these with ML. Initial model selection identified SentencePiece with 8,000 and 32,000 words as the best approach for genome tokenization. We then classified in Neisseria meningitidis genomes the capsule B group genotype with 99.6% accuracy and the multifactor invasive phenotype with 90.2% accuracy, in an independent test set. Subsequently, in silico knockouts of 2,808 genes confirmed that the ML model predictions aligned with our current understanding of the underlying biology. To our knowledge, this is the first ML method using entire bacterial genomes to classify strains and identify genes considered relevant by the classifier. [Display omitted] •We recoded bacterial genomes as words and classified them using machine learning•We tested the approach by predicting the type of bacterial capsule and invasiveness•Predictions were accurate: 99.6% for bacterial capsule type, 90.2% for invasiveness•This can improve tasks like monitoring antibiotic resistance and disease outbreaks Microbial genomics; Classification of bioinformatical subject; Machine learning</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2024.109257</identifier><identifier>PMID: 38439962</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Classification of bioinformatical subject ; Machine learning ; Microbial genomics</subject><ispartof>iScience, 2024-03, Vol.27 (3), p.109257, Article 109257</ispartof><rights>2024 GSK</rights><rights>2024 GSK.</rights><rights>2024 GSK 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c473t-38891d8e5ff43179b8e663ed789730b85fde2d379d3578a16d3f6167abc618813</cites><orcidid>0000-0002-3261-6235 ; 0000-0002-5540-3742 ; 0000-0001-9708-9336 ; 0000-0003-1497-9515 ; 0000-0002-3947-7143 ; 0000-0002-7054-8712 ; 0000-0002-8635-6424 ; 0000-0002-4746-5900 ; 0000-0002-8020-4219 ; 0000-0001-7203-5366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910294/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589004224004784$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38439962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Podda, Marco</creatorcontrib><creatorcontrib>Bonechi, Simone</creatorcontrib><creatorcontrib>Palladino, Andrea</creatorcontrib><creatorcontrib>Scaramuzzino, Mattia</creatorcontrib><creatorcontrib>Brozzi, Alessandro</creatorcontrib><creatorcontrib>Roma, Guglielmo</creatorcontrib><creatorcontrib>Muzzi, Alessandro</creatorcontrib><creatorcontrib>Priami, Corrado</creatorcontrib><creatorcontrib>Sîrbu, Alina</creatorcontrib><creatorcontrib>Bodini, Margherita</creatorcontrib><title>Classification of Neisseria meningitidis genomes with a bag-of-words approach and machine learning</title><title>iScience</title><addtitle>iScience</addtitle><description>Whole genome sequencing of bacteria is important to enable strain classification. Using entire genomes as an input to machine learning (ML) models would allow rapid classification of strains while using information from multiple genetic elements. We developed a “bag-of-words” approach to encode, using SentencePiece or k-mer tokenization, entire bacterial genomes and analyze these with ML. Initial model selection identified SentencePiece with 8,000 and 32,000 words as the best approach for genome tokenization. We then classified in Neisseria meningitidis genomes the capsule B group genotype with 99.6% accuracy and the multifactor invasive phenotype with 90.2% accuracy, in an independent test set. Subsequently, in silico knockouts of 2,808 genes confirmed that the ML model predictions aligned with our current understanding of the underlying biology. To our knowledge, this is the first ML method using entire bacterial genomes to classify strains and identify genes considered relevant by the classifier. [Display omitted] •We recoded bacterial genomes as words and classified them using machine learning•We tested the approach by predicting the type of bacterial capsule and invasiveness•Predictions were accurate: 99.6% for bacterial capsule type, 90.2% for invasiveness•This can improve tasks like monitoring antibiotic resistance and disease outbreaks Microbial genomics; Classification of bioinformatical subject; Machine learning</description><subject>Classification of bioinformatical subject</subject><subject>Machine learning</subject><subject>Microbial genomics</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kVtrFTEUhQdRbKn9Az5IHn2ZY26TCwgiBy-Foi_6HDLJzjSHmckxmdPivzfj1NK-CIFsdtb-VtiraV4TvCOYiHeHXSwu7iimvDY07eSz5px2SrcYc_r8UX3WXJZywBjTergWL5szpjjTWtDzpt-PtpQYorNLTDNKAX2DWArkaNEEc5yHuEQfCxpgThMUdBeXG2RRb4c2hfYuZV-QPR5zsq72Z4-mWsQZ0Ag2r_OvmhfBjgUu7--L5ufnTz_2X9vr71-u9h-vW8clW1qmlCZeQRcCZ0TqXoEQDLxUWjLcqy54oJ5J7VknlSXCsyCIkLZ3gihF2EVztXF9sgdzzHGy-bdJNpq_jZQHY_MS3QimGjAbOisldhy8WF2VZpxKGTyGUFkfNtbx1E_gHcxLtuMT6NOXOd6YId2aGgXBVPNKeHtPyOnXCcpiphoYjKOdIZ2KoZpVd864qFK6SV1OpWQIDz4EmzVsczBr2GYN22xh16E3j3_4MPIv2ip4vwmg7vw2QjYVAbMDHzO4pS4l_o__BzRZu7U</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Podda, Marco</creator><creator>Bonechi, Simone</creator><creator>Palladino, Andrea</creator><creator>Scaramuzzino, Mattia</creator><creator>Brozzi, Alessandro</creator><creator>Roma, Guglielmo</creator><creator>Muzzi, Alessandro</creator><creator>Priami, Corrado</creator><creator>Sîrbu, Alina</creator><creator>Bodini, Margherita</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3261-6235</orcidid><orcidid>https://orcid.org/0000-0002-5540-3742</orcidid><orcidid>https://orcid.org/0000-0001-9708-9336</orcidid><orcidid>https://orcid.org/0000-0003-1497-9515</orcidid><orcidid>https://orcid.org/0000-0002-3947-7143</orcidid><orcidid>https://orcid.org/0000-0002-7054-8712</orcidid><orcidid>https://orcid.org/0000-0002-8635-6424</orcidid><orcidid>https://orcid.org/0000-0002-4746-5900</orcidid><orcidid>https://orcid.org/0000-0002-8020-4219</orcidid><orcidid>https://orcid.org/0000-0001-7203-5366</orcidid></search><sort><creationdate>20240315</creationdate><title>Classification of Neisseria meningitidis genomes with a bag-of-words approach and machine learning</title><author>Podda, Marco ; Bonechi, Simone ; Palladino, Andrea ; Scaramuzzino, Mattia ; Brozzi, Alessandro ; Roma, Guglielmo ; Muzzi, Alessandro ; Priami, Corrado ; Sîrbu, Alina ; Bodini, Margherita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-38891d8e5ff43179b8e663ed789730b85fde2d379d3578a16d3f6167abc618813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification of bioinformatical subject</topic><topic>Machine learning</topic><topic>Microbial genomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podda, Marco</creatorcontrib><creatorcontrib>Bonechi, Simone</creatorcontrib><creatorcontrib>Palladino, Andrea</creatorcontrib><creatorcontrib>Scaramuzzino, Mattia</creatorcontrib><creatorcontrib>Brozzi, Alessandro</creatorcontrib><creatorcontrib>Roma, Guglielmo</creatorcontrib><creatorcontrib>Muzzi, Alessandro</creatorcontrib><creatorcontrib>Priami, Corrado</creatorcontrib><creatorcontrib>Sîrbu, Alina</creatorcontrib><creatorcontrib>Bodini, Margherita</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Podda, Marco</au><au>Bonechi, Simone</au><au>Palladino, Andrea</au><au>Scaramuzzino, Mattia</au><au>Brozzi, Alessandro</au><au>Roma, Guglielmo</au><au>Muzzi, Alessandro</au><au>Priami, Corrado</au><au>Sîrbu, Alina</au><au>Bodini, Margherita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Neisseria meningitidis genomes with a bag-of-words approach and machine learning</atitle><jtitle>iScience</jtitle><addtitle>iScience</addtitle><date>2024-03-15</date><risdate>2024</risdate><volume>27</volume><issue>3</issue><spage>109257</spage><pages>109257-</pages><artnum>109257</artnum><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>Whole genome sequencing of bacteria is important to enable strain classification. Using entire genomes as an input to machine learning (ML) models would allow rapid classification of strains while using information from multiple genetic elements. We developed a “bag-of-words” approach to encode, using SentencePiece or k-mer tokenization, entire bacterial genomes and analyze these with ML. Initial model selection identified SentencePiece with 8,000 and 32,000 words as the best approach for genome tokenization. We then classified in Neisseria meningitidis genomes the capsule B group genotype with 99.6% accuracy and the multifactor invasive phenotype with 90.2% accuracy, in an independent test set. Subsequently, in silico knockouts of 2,808 genes confirmed that the ML model predictions aligned with our current understanding of the underlying biology. To our knowledge, this is the first ML method using entire bacterial genomes to classify strains and identify genes considered relevant by the classifier. [Display omitted] •We recoded bacterial genomes as words and classified them using machine learning•We tested the approach by predicting the type of bacterial capsule and invasiveness•Predictions were accurate: 99.6% for bacterial capsule type, 90.2% for invasiveness•This can improve tasks like monitoring antibiotic resistance and disease outbreaks Microbial genomics; Classification of bioinformatical subject; Machine learning</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38439962</pmid><doi>10.1016/j.isci.2024.109257</doi><orcidid>https://orcid.org/0000-0002-3261-6235</orcidid><orcidid>https://orcid.org/0000-0002-5540-3742</orcidid><orcidid>https://orcid.org/0000-0001-9708-9336</orcidid><orcidid>https://orcid.org/0000-0003-1497-9515</orcidid><orcidid>https://orcid.org/0000-0002-3947-7143</orcidid><orcidid>https://orcid.org/0000-0002-7054-8712</orcidid><orcidid>https://orcid.org/0000-0002-8635-6424</orcidid><orcidid>https://orcid.org/0000-0002-4746-5900</orcidid><orcidid>https://orcid.org/0000-0002-8020-4219</orcidid><orcidid>https://orcid.org/0000-0001-7203-5366</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-0042
ispartof iScience, 2024-03, Vol.27 (3), p.109257, Article 109257
issn 2589-0042
2589-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4313af5a770c4ed68e5f8934277fd0ef
source PubMed (Medline); ScienceDirect Journals
subjects Classification of bioinformatical subject
Machine learning
Microbial genomics
title Classification of Neisseria meningitidis genomes with a bag-of-words approach and machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Neisseria%20meningitidis%20genomes%20with%20a%20bag-of-words%20approach%20and%20machine%20learning&rft.jtitle=iScience&rft.au=Podda,%20Marco&rft.date=2024-03-15&rft.volume=27&rft.issue=3&rft.spage=109257&rft.pages=109257-&rft.artnum=109257&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2024.109257&rft_dat=%3Cproquest_doaj_%3E2937704346%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-38891d8e5ff43179b8e663ed789730b85fde2d379d3578a16d3f6167abc618813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937704346&rft_id=info:pmid/38439962&rfr_iscdi=true