Loading…

Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor

We present a versatile continuous microfluidic flow-focusing method for the production of Doxorubicin (DOX) or Tamoxifen (TAM)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). We use a partially water-miscible solvent mixture (dimethyl sulfoxide DMSO+ dichloromethane DCM) as prec...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-07, Vol.7 (1), p.4794-12, Article 4794
Main Authors: Xu, Jiang, Zhang, Shusheng, Machado, Anais, Lecommandoux, SĂ©bastien, Sandre, Olivier, Gu, Frank, Colin, Annie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a versatile continuous microfluidic flow-focusing method for the production of Doxorubicin (DOX) or Tamoxifen (TAM)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). We use a partially water-miscible solvent mixture (dimethyl sulfoxide DMSO+ dichloromethane DCM) as precursor drug/polymer solution for NPs nucleation. We extrude this partially water-miscible solution into an aqueous medium and synthesized uniform PLGA NPs with higher drug loading ability and longer sustained-release ability than conventional microfluidic or batch preparation methods. The size of NPs could be precisely tuned by changing the flow rate ratios, polymer concentration, and volume ratio of DCM to DMSO (VDCM/VDMSO) in the precursor emulsion. We investigated the mechanism of the formation of NPs and the effect of VDCM/VDMSO on drug release kinetics. Our work suggests that this original, rapid, facile, efficient and low-cost method is a promising technology for high throughput NP fabrication. For the two tested drugs, one hydrophilic (Doxorubicin) the other one hydrophobic (Tamoxifen), encapsulation efficiency (EE) as high as 88% and mass loading content (LC) higher than 25% were achieved. This new process could be extended as an efficient and large scale NP production method to benefit to fields like controlled drug release and nanomedicine.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-05184-5