Loading…

Novel Aβ peptide immunogens modulate plaque pathology and inflammation in a murine model of Alzheimer's disease

Background Alzheimer's disease, a common dementia of the elder, is characterized by accumulation of protein amyloid deposits in the brain. Immunization to prevent this accumulation has been proposed as a therapeutic possibility, although adverse inflammatory reactions in human trials indicate t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroinflammation 2005-12, Vol.2 (1), p.28-28, Article 28
Main Authors: Zhou, Jun, Fonseca, Maria I, Kayed, Rakez, Hernandez, Irma, Webster, Scott D, Yazan, Ozkan, Cribbs, David H, Glabe, Charles G, Tenner, Andrea J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Alzheimer's disease, a common dementia of the elder, is characterized by accumulation of protein amyloid deposits in the brain. Immunization to prevent this accumulation has been proposed as a therapeutic possibility, although adverse inflammatory reactions in human trials indicate the need for novel vaccination strategies. Method Here vaccination with novel amyloid peptide immunogens was assessed in a transgenic mouse model displaying age-related accumulation of fibrillar plaques. Results Immunization with any conformation of the amyloid peptide initiated at 12 months of age (at which time fibrillar amyloid has just begun to accumulate) showed significant decrease in total and fibrillar amyloid deposits and in glial reactivity relative to control transgenic animals. In contrast, there was no significant decrease in amyloid deposition or glial activation in mice in which vaccination was initiated at 16 months of age, despite the presence of similar levels anti-A beta antibodies in young and old animals vaccinated with a given immunogen. Interestingly, immunization with an oligomeric conformation of A beta was equally as effective as other amyloid peptides at reducing plaque accumulation. However, the antibodies generated by immunization with the oligomeric conformation of A beta have more limited epitope reactivity than those generated by fA beta , and the microglial response was significantly less robust. Conclusion These results suggest that a more specific immunogen such as oligomeric A beta can be designed that achieves the goal of depleting amyloid while reducing potential detrimental inflammatory reactions. In addition, the data show that active immunization of older Tg2576 mice with any amyloid conformation is not as efficient at reducing amyloid accumulation and related pathology as immunization of younger mice, and that serum anti-amyloid antibody levels are not quantitatively related to reduced amyloid-associated pathology.
ISSN:1742-2094
1742-2094
DOI:10.1186/1742-2094-2-28