Loading…

DEVO: an ontology to assist with dermoscopic feature standardization

The utilization of dermoscopic analysis is becoming increasingly critical for diagnosing skin diseases by physicians and even artificial intelligence. With the expansion of dermoscopy, its vocabulary has proliferated, but the rapid evolution of the vocabulary of dermoscopy without standardized contr...

Full description

Saved in:
Bibliographic Details
Published in:BMC medical informatics and decision making 2023-08, Vol.23 (Suppl 1), p.162-13, Article 162
Main Authors: Zhang, Xinyuan, Lin, Rebecca Z, Amith, Muhammad Tuan, Wang, Cynthia, Light, Jeremy, Strickley, John, Tao, Cui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The utilization of dermoscopic analysis is becoming increasingly critical for diagnosing skin diseases by physicians and even artificial intelligence. With the expansion of dermoscopy, its vocabulary has proliferated, but the rapid evolution of the vocabulary of dermoscopy without standardized control is counterproductive. We aimed to develop a domain-specific ontology to formally represent knowledge for certain dermoscopic features. The first phase involved creating a fundamental-level ontology that covers the fundamental aspects and elements in describing visualizations, such as shapes and colors. The second phase involved creating a domain ontology that harnesses the fundamental-level ontology to formalize the definitions of dermoscopic metaphorical terms. The Dermoscopy Elements of Visuals Ontology (DEVO) contains 1047 classes, 47 object properties, and 16 data properties. It has a better semiotic score compared to similar ontologies of the same domain. Three human annotators also examined the consistency, complexity, and future application of the ontology. The proposed ontology was able to harness the definitions of metaphoric terms by decomposing them into their visual elements. Future applications include providing education for trainees and diagnostic support for dermatologists, with the goal of generating responses to queries about dermoscopic features and integrating these features to diagnose skin diseases.
ISSN:1472-6947
1472-6947
DOI:10.1186/s12911-023-02251-y