Loading…
New multiple positive solutions for elliptic equations with singularity and critical growth
In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(...
Saved in:
Published in: | Electronic journal of qualitative theory of differential equations 2019-01, Vol.2019 (20), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3 |
container_end_page | 14 |
container_issue | 20 |
container_start_page | 1 |
container_title | Electronic journal of qualitative theory of differential equations |
container_volume | 2019 |
creator | Suo, Hong-Min Lei, Chun-Yu Liao, Jiafeng |
description | In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(0,1)$ and $\lambda>0$ is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions $w_0(x)$ and $w_1(x)$ with $w_0(x) |
doi_str_mv | 10.14232/ejqtde.2019.1.20 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146</doaj_id><sourcerecordid>oai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEEqXwAez8Ayl-JLazRBWPShVsYMXCmiST1pVbp7ZD1b8nUIRYnau7OJq5WXbL6IwVXPA73OxTizNOWTVjI86yCSuYyoVW5fm_fJldxbihlHNZykn28YIHsh1csr1D0vtok_1EEr0bkvW7SDofCDpn-2QbgvsBTvXBpjWJdrcaHASbjgR2LWnGZBtwZBX8Ia2vs4sOXMSbX06z98eHt_lzvnx9Wszvl3kjqEx5DUIpkLpGVMA0SKph_IKDrrDiZdm1vFQaOtUh1aLkbdPUQpSaIlXQMRDTbHHyth42pg92C-FoPFjzU_iwMhDGwxyaQkCBvKZVoeoCdFl1EjVWrZSV0qyQo4udXE3wMQbs_nyMmp-lzWlp8720YSPEF82KdO0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New multiple positive solutions for elliptic equations with singularity and critical growth</title><source>DOAJ Directory of Open Access Journals</source><creator>Suo, Hong-Min ; Lei, Chun-Yu ; Liao, Jiafeng</creator><creatorcontrib>Suo, Hong-Min ; Lei, Chun-Yu ; Liao, Jiafeng</creatorcontrib><description>In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(0,1)$ and $\lambda>0$ is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions $w_0(x)$ and $w_1(x)$ with $w_0(x)<w_1(x)$ in $\Omega$.</description><identifier>ISSN: 1417-3875</identifier><identifier>EISSN: 1417-3875</identifier><identifier>DOI: 10.14232/ejqtde.2019.1.20</identifier><language>eng</language><publisher>University of Szeged</publisher><subject>critical growth ; positive solution ; semilinear elliptic equations ; singularity</subject><ispartof>Electronic journal of qualitative theory of differential equations, 2019-01, Vol.2019 (20), p.1-14</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Suo, Hong-Min</creatorcontrib><creatorcontrib>Lei, Chun-Yu</creatorcontrib><creatorcontrib>Liao, Jiafeng</creatorcontrib><title>New multiple positive solutions for elliptic equations with singularity and critical growth</title><title>Electronic journal of qualitative theory of differential equations</title><description>In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(0,1)$ and $\lambda>0$ is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions $w_0(x)$ and $w_1(x)$ with $w_0(x)<w_1(x)$ in $\Omega$.</description><subject>critical growth</subject><subject>positive solution</subject><subject>semilinear elliptic equations</subject><subject>singularity</subject><issn>1417-3875</issn><issn>1417-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRSMEEqXwAez8Ayl-JLazRBWPShVsYMXCmiST1pVbp7ZD1b8nUIRYnau7OJq5WXbL6IwVXPA73OxTizNOWTVjI86yCSuYyoVW5fm_fJldxbihlHNZykn28YIHsh1csr1D0vtok_1EEr0bkvW7SDofCDpn-2QbgvsBTvXBpjWJdrcaHASbjgR2LWnGZBtwZBX8Ia2vs4sOXMSbX06z98eHt_lzvnx9Wszvl3kjqEx5DUIpkLpGVMA0SKph_IKDrrDiZdm1vFQaOtUh1aLkbdPUQpSaIlXQMRDTbHHyth42pg92C-FoPFjzU_iwMhDGwxyaQkCBvKZVoeoCdFl1EjVWrZSV0qyQo4udXE3wMQbs_nyMmp-lzWlp8720YSPEF82KdO0</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Suo, Hong-Min</creator><creator>Lei, Chun-Yu</creator><creator>Liao, Jiafeng</creator><general>University of Szeged</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20190101</creationdate><title>New multiple positive solutions for elliptic equations with singularity and critical growth</title><author>Suo, Hong-Min ; Lei, Chun-Yu ; Liao, Jiafeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>critical growth</topic><topic>positive solution</topic><topic>semilinear elliptic equations</topic><topic>singularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suo, Hong-Min</creatorcontrib><creatorcontrib>Lei, Chun-Yu</creatorcontrib><creatorcontrib>Liao, Jiafeng</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electronic journal of qualitative theory of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suo, Hong-Min</au><au>Lei, Chun-Yu</au><au>Liao, Jiafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New multiple positive solutions for elliptic equations with singularity and critical growth</atitle><jtitle>Electronic journal of qualitative theory of differential equations</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>20</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1417-3875</issn><eissn>1417-3875</eissn><abstract>In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(0,1)$ and $\lambda>0$ is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions $w_0(x)$ and $w_1(x)$ with $w_0(x)<w_1(x)$ in $\Omega$.</abstract><pub>University of Szeged</pub><doi>10.14232/ejqtde.2019.1.20</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1417-3875 |
ispartof | Electronic journal of qualitative theory of differential equations, 2019-01, Vol.2019 (20), p.1-14 |
issn | 1417-3875 1417-3875 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146 |
source | DOAJ Directory of Open Access Journals |
subjects | critical growth positive solution semilinear elliptic equations singularity |
title | New multiple positive solutions for elliptic equations with singularity and critical growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20multiple%20positive%20solutions%20for%20elliptic%20equations%20with%20singularity%20and%20critical%20growth&rft.jtitle=Electronic%20journal%20of%20qualitative%20theory%20of%20differential%20equations&rft.au=Suo,%20Hong-Min&rft.date=2019-01-01&rft.volume=2019&rft.issue=20&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1417-3875&rft.eissn=1417-3875&rft_id=info:doi/10.14232/ejqtde.2019.1.20&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |