Loading…

New multiple positive solutions for elliptic equations with singularity and critical growth

In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(...

Full description

Saved in:
Bibliographic Details
Published in:Electronic journal of qualitative theory of differential equations 2019-01, Vol.2019 (20), p.1-14
Main Authors: Suo, Hong-Min, Lei, Chun-Yu, Liao, Jiafeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3
container_end_page 14
container_issue 20
container_start_page 1
container_title Electronic journal of qualitative theory of differential equations
container_volume 2019
creator Suo, Hong-Min
Lei, Chun-Yu
Liao, Jiafeng
description In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(0,1)$ and $\lambda>0$ is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions $w_0(x)$ and $w_1(x)$ with $w_0(x)
doi_str_mv 10.14232/ejqtde.2019.1.20
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146</doaj_id><sourcerecordid>oai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEEqXwAez8Ayl-JLazRBWPShVsYMXCmiST1pVbp7ZD1b8nUIRYnau7OJq5WXbL6IwVXPA73OxTizNOWTVjI86yCSuYyoVW5fm_fJldxbihlHNZykn28YIHsh1csr1D0vtok_1EEr0bkvW7SDofCDpn-2QbgvsBTvXBpjWJdrcaHASbjgR2LWnGZBtwZBX8Ia2vs4sOXMSbX06z98eHt_lzvnx9Wszvl3kjqEx5DUIpkLpGVMA0SKph_IKDrrDiZdm1vFQaOtUh1aLkbdPUQpSaIlXQMRDTbHHyth42pg92C-FoPFjzU_iwMhDGwxyaQkCBvKZVoeoCdFl1EjVWrZSV0qyQo4udXE3wMQbs_nyMmp-lzWlp8720YSPEF82KdO0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New multiple positive solutions for elliptic equations with singularity and critical growth</title><source>DOAJ Directory of Open Access Journals</source><creator>Suo, Hong-Min ; Lei, Chun-Yu ; Liao, Jiafeng</creator><creatorcontrib>Suo, Hong-Min ; Lei, Chun-Yu ; Liao, Jiafeng</creatorcontrib><description>In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(0,1)$ and $\lambda&gt;0$ is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions $w_0(x)$ and $w_1(x)$ with $w_0(x)&lt;w_1(x)$ in $\Omega$.</description><identifier>ISSN: 1417-3875</identifier><identifier>EISSN: 1417-3875</identifier><identifier>DOI: 10.14232/ejqtde.2019.1.20</identifier><language>eng</language><publisher>University of Szeged</publisher><subject>critical growth ; positive solution ; semilinear elliptic equations ; singularity</subject><ispartof>Electronic journal of qualitative theory of differential equations, 2019-01, Vol.2019 (20), p.1-14</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Suo, Hong-Min</creatorcontrib><creatorcontrib>Lei, Chun-Yu</creatorcontrib><creatorcontrib>Liao, Jiafeng</creatorcontrib><title>New multiple positive solutions for elliptic equations with singularity and critical growth</title><title>Electronic journal of qualitative theory of differential equations</title><description>In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(0,1)$ and $\lambda&gt;0$ is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions $w_0(x)$ and $w_1(x)$ with $w_0(x)&lt;w_1(x)$ in $\Omega$.</description><subject>critical growth</subject><subject>positive solution</subject><subject>semilinear elliptic equations</subject><subject>singularity</subject><issn>1417-3875</issn><issn>1417-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRSMEEqXwAez8Ayl-JLazRBWPShVsYMXCmiST1pVbp7ZD1b8nUIRYnau7OJq5WXbL6IwVXPA73OxTizNOWTVjI86yCSuYyoVW5fm_fJldxbihlHNZykn28YIHsh1csr1D0vtok_1EEr0bkvW7SDofCDpn-2QbgvsBTvXBpjWJdrcaHASbjgR2LWnGZBtwZBX8Ia2vs4sOXMSbX06z98eHt_lzvnx9Wszvl3kjqEx5DUIpkLpGVMA0SKph_IKDrrDiZdm1vFQaOtUh1aLkbdPUQpSaIlXQMRDTbHHyth42pg92C-FoPFjzU_iwMhDGwxyaQkCBvKZVoeoCdFl1EjVWrZSV0qyQo4udXE3wMQbs_nyMmp-lzWlp8720YSPEF82KdO0</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Suo, Hong-Min</creator><creator>Lei, Chun-Yu</creator><creator>Liao, Jiafeng</creator><general>University of Szeged</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20190101</creationdate><title>New multiple positive solutions for elliptic equations with singularity and critical growth</title><author>Suo, Hong-Min ; Lei, Chun-Yu ; Liao, Jiafeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>critical growth</topic><topic>positive solution</topic><topic>semilinear elliptic equations</topic><topic>singularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suo, Hong-Min</creatorcontrib><creatorcontrib>Lei, Chun-Yu</creatorcontrib><creatorcontrib>Liao, Jiafeng</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electronic journal of qualitative theory of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suo, Hong-Min</au><au>Lei, Chun-Yu</au><au>Liao, Jiafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New multiple positive solutions for elliptic equations with singularity and critical growth</atitle><jtitle>Electronic journal of qualitative theory of differential equations</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>20</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1417-3875</issn><eissn>1417-3875</eissn><abstract>In this note, the existence of multiple positive solutions is established for a semilinear elliptic equation $ -\Delta u=\frac{\lambda}{u^\gamma}+u^{2^*-1},~x\in\Omega,~u=0, x\in\partial\Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ ($N\geq3$), $2^*=\frac{2N}{N-2}$, $\gamma\in(0,1)$ and $\lambda&gt;0$ is a real parameter. We show by the variational methods and perturbation functional that the problem has at least two positive solutions $w_0(x)$ and $w_1(x)$ with $w_0(x)&lt;w_1(x)$ in $\Omega$.</abstract><pub>University of Szeged</pub><doi>10.14232/ejqtde.2019.1.20</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1417-3875
ispartof Electronic journal of qualitative theory of differential equations, 2019-01, Vol.2019 (20), p.1-14
issn 1417-3875
1417-3875
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146
source DOAJ Directory of Open Access Journals
subjects critical growth
positive solution
semilinear elliptic equations
singularity
title New multiple positive solutions for elliptic equations with singularity and critical growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20multiple%20positive%20solutions%20for%20elliptic%20equations%20with%20singularity%20and%20critical%20growth&rft.jtitle=Electronic%20journal%20of%20qualitative%20theory%20of%20differential%20equations&rft.au=Suo,%20Hong-Min&rft.date=2019-01-01&rft.volume=2019&rft.issue=20&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1417-3875&rft.eissn=1417-3875&rft_id=info:doi/10.14232/ejqtde.2019.1.20&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_43a4e2b0947b4a859f6e8e9d66978146%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-ba377a68bee7a18a608a0192a89e9255fd2578af7fe08352dccb33580e07af1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true