Loading…
High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis
In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo,...
Saved in:
Published in: | Energies (Basel) 2022-02, Vol.15 (4), p.1369 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73 |
container_end_page | |
container_issue | 4 |
container_start_page | 1369 |
container_title | Energies (Basel) |
container_volume | 15 |
creator | Meng, Xiao-Kai Jia, Yan-Bing Liu, Zhi-Heng Yu, Zhi-Qiang Han, Pei-Jie Lu, Zhu-Mao Jin, Tao |
description | In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo, MCMC) is proposed. The sampling method is used for evaluating the condition of high-voltage cables. The weight vector set obtained by MCMC sampling and the comprehensive degradation degree of the high-voltage cable sample are weighted and summed then compared in pairs to obtain the comprehensive degradation degree result. The status probability value and overall priority ranking probability of the object to be evaluated are obtained based on probability statistics, and the order of maintenance is determined according to the status probability value and the ranking result. It is realized that the cable line that needs to be identified in the follow-up defect is clarified according to the evaluation result. This is helpful for operational and maintenance personnel to more accurately implement the maintenance plan for the cable and improve the operational and maintenance efficiency. |
doi_str_mv | 10.3390/en15041369 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_43a601b6018245f284c8345d29d52d52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43a601b6018245f284c8345d29d52d52</doaj_id><sourcerecordid>2632728954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73</originalsourceid><addsrcrecordid>eNpNUdtKAzEQDaJg0b74BQu-CatJJtndPNZ6aaFF8PYappuk3bLd1E360L83WlGHuRxmhjMchpALRq8BFL2xHZNUMCjUERkwpYqc0RKO_-FTMgxhTZMBMAAYkOdJs1zl776NuLTZGBdtyr4zTWx8l41CsCFsbBezuY0rb7JbDNZkaTTftbHJX_yur212hxGzUYftPjThnJw4bIMd_tQz8vZw_zqe5LOnx-l4NMtr4DTmhlvpJK-MWlRljcZSl7B0DoqFq1EaJQQrqRUllgV1QiGjIA2VWAJ1KZ2R6YHXeFzrbd9ssN9rj43-bvh-qbGPTd1aLQALyhYpKi6k45WoKxDScGUkT564Lg9c295_7GyIep2UJUFB8wJ4ySslRdq6OmzVvQ-ht-73KqP66wX67wXwCSnbdlo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632728954</pqid></control><display><type>article</type><title>High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis</title><source>Publicly Available Content (ProQuest)</source><creator>Meng, Xiao-Kai ; Jia, Yan-Bing ; Liu, Zhi-Heng ; Yu, Zhi-Qiang ; Han, Pei-Jie ; Lu, Zhu-Mao ; Jin, Tao</creator><creatorcontrib>Meng, Xiao-Kai ; Jia, Yan-Bing ; Liu, Zhi-Heng ; Yu, Zhi-Qiang ; Han, Pei-Jie ; Lu, Zhu-Mao ; Jin, Tao</creatorcontrib><description>In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo, MCMC) is proposed. The sampling method is used for evaluating the condition of high-voltage cables. The weight vector set obtained by MCMC sampling and the comprehensive degradation degree of the high-voltage cable sample are weighted and summed then compared in pairs to obtain the comprehensive degradation degree result. The status probability value and overall priority ranking probability of the object to be evaluated are obtained based on probability statistics, and the order of maintenance is determined according to the status probability value and the ranking result. It is realized that the cable line that needs to be identified in the follow-up defect is clarified according to the evaluation result. This is helpful for operational and maintenance personnel to more accurately implement the maintenance plan for the cable and improve the operational and maintenance efficiency.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15041369</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cables ; Data analysis ; Electricity distribution ; Evaluation ; high voltage cable ; High voltages ; Maintenance ; Markov chain Monte Carlo ; Markov chains ; Methods ; Ranking ; Sampling ; Sampling methods ; state evaluation ; Statistical analysis ; Voltage ; weight space</subject><ispartof>Energies (Basel), 2022-02, Vol.15 (4), p.1369</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632728954/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632728954?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Meng, Xiao-Kai</creatorcontrib><creatorcontrib>Jia, Yan-Bing</creatorcontrib><creatorcontrib>Liu, Zhi-Heng</creatorcontrib><creatorcontrib>Yu, Zhi-Qiang</creatorcontrib><creatorcontrib>Han, Pei-Jie</creatorcontrib><creatorcontrib>Lu, Zhu-Mao</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><title>High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis</title><title>Energies (Basel)</title><description>In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo, MCMC) is proposed. The sampling method is used for evaluating the condition of high-voltage cables. The weight vector set obtained by MCMC sampling and the comprehensive degradation degree of the high-voltage cable sample are weighted and summed then compared in pairs to obtain the comprehensive degradation degree result. The status probability value and overall priority ranking probability of the object to be evaluated are obtained based on probability statistics, and the order of maintenance is determined according to the status probability value and the ranking result. It is realized that the cable line that needs to be identified in the follow-up defect is clarified according to the evaluation result. This is helpful for operational and maintenance personnel to more accurately implement the maintenance plan for the cable and improve the operational and maintenance efficiency.</description><subject>Cables</subject><subject>Data analysis</subject><subject>Electricity distribution</subject><subject>Evaluation</subject><subject>high voltage cable</subject><subject>High voltages</subject><subject>Maintenance</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Methods</subject><subject>Ranking</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>state evaluation</subject><subject>Statistical analysis</subject><subject>Voltage</subject><subject>weight space</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQDaJg0b74BQu-CatJJtndPNZ6aaFF8PYappuk3bLd1E360L83WlGHuRxmhjMchpALRq8BFL2xHZNUMCjUERkwpYqc0RKO_-FTMgxhTZMBMAAYkOdJs1zl776NuLTZGBdtyr4zTWx8l41CsCFsbBezuY0rb7JbDNZkaTTftbHJX_yur212hxGzUYftPjThnJw4bIMd_tQz8vZw_zqe5LOnx-l4NMtr4DTmhlvpJK-MWlRljcZSl7B0DoqFq1EaJQQrqRUllgV1QiGjIA2VWAJ1KZ2R6YHXeFzrbd9ssN9rj43-bvh-qbGPTd1aLQALyhYpKi6k45WoKxDScGUkT564Lg9c295_7GyIep2UJUFB8wJ4ySslRdq6OmzVvQ-ht-73KqP66wX67wXwCSnbdlo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Meng, Xiao-Kai</creator><creator>Jia, Yan-Bing</creator><creator>Liu, Zhi-Heng</creator><creator>Yu, Zhi-Qiang</creator><creator>Han, Pei-Jie</creator><creator>Lu, Zhu-Mao</creator><creator>Jin, Tao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20220201</creationdate><title>High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis</title><author>Meng, Xiao-Kai ; Jia, Yan-Bing ; Liu, Zhi-Heng ; Yu, Zhi-Qiang ; Han, Pei-Jie ; Lu, Zhu-Mao ; Jin, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cables</topic><topic>Data analysis</topic><topic>Electricity distribution</topic><topic>Evaluation</topic><topic>high voltage cable</topic><topic>High voltages</topic><topic>Maintenance</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Methods</topic><topic>Ranking</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>state evaluation</topic><topic>Statistical analysis</topic><topic>Voltage</topic><topic>weight space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xiao-Kai</creatorcontrib><creatorcontrib>Jia, Yan-Bing</creatorcontrib><creatorcontrib>Liu, Zhi-Heng</creatorcontrib><creatorcontrib>Yu, Zhi-Qiang</creatorcontrib><creatorcontrib>Han, Pei-Jie</creatorcontrib><creatorcontrib>Lu, Zhu-Mao</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xiao-Kai</au><au>Jia, Yan-Bing</au><au>Liu, Zhi-Heng</au><au>Yu, Zhi-Qiang</au><au>Han, Pei-Jie</au><au>Lu, Zhu-Mao</au><au>Jin, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis</atitle><jtitle>Energies (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1369</spage><pages>1369-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo, MCMC) is proposed. The sampling method is used for evaluating the condition of high-voltage cables. The weight vector set obtained by MCMC sampling and the comprehensive degradation degree of the high-voltage cable sample are weighted and summed then compared in pairs to obtain the comprehensive degradation degree result. The status probability value and overall priority ranking probability of the object to be evaluated are obtained based on probability statistics, and the order of maintenance is determined according to the status probability value and the ranking result. It is realized that the cable line that needs to be identified in the follow-up defect is clarified according to the evaluation result. This is helpful for operational and maintenance personnel to more accurately implement the maintenance plan for the cable and improve the operational and maintenance efficiency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15041369</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2022-02, Vol.15 (4), p.1369 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_43a601b6018245f284c8345d29d52d52 |
source | Publicly Available Content (ProQuest) |
subjects | Cables Data analysis Electricity distribution Evaluation high voltage cable High voltages Maintenance Markov chain Monte Carlo Markov chains Methods Ranking Sampling Sampling methods state evaluation Statistical analysis Voltage weight space |
title | High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Voltage%20Cable%20Condition%20Assessment%20Method%20Based%20on%20Multi-Source%20Data%20Analysis&rft.jtitle=Energies%20(Basel)&rft.au=Meng,%20Xiao-Kai&rft.date=2022-02-01&rft.volume=15&rft.issue=4&rft.spage=1369&rft.pages=1369-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15041369&rft_dat=%3Cproquest_doaj_%3E2632728954%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632728954&rft_id=info:pmid/&rfr_iscdi=true |