Loading…

High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis

In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo,...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-02, Vol.15 (4), p.1369
Main Authors: Meng, Xiao-Kai, Jia, Yan-Bing, Liu, Zhi-Heng, Yu, Zhi-Qiang, Han, Pei-Jie, Lu, Zhu-Mao, Jin, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73
container_end_page
container_issue 4
container_start_page 1369
container_title Energies (Basel)
container_volume 15
creator Meng, Xiao-Kai
Jia, Yan-Bing
Liu, Zhi-Heng
Yu, Zhi-Qiang
Han, Pei-Jie
Lu, Zhu-Mao
Jin, Tao
description In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo, MCMC) is proposed. The sampling method is used for evaluating the condition of high-voltage cables. The weight vector set obtained by MCMC sampling and the comprehensive degradation degree of the high-voltage cable sample are weighted and summed then compared in pairs to obtain the comprehensive degradation degree result. The status probability value and overall priority ranking probability of the object to be evaluated are obtained based on probability statistics, and the order of maintenance is determined according to the status probability value and the ranking result. It is realized that the cable line that needs to be identified in the follow-up defect is clarified according to the evaluation result. This is helpful for operational and maintenance personnel to more accurately implement the maintenance plan for the cable and improve the operational and maintenance efficiency.
doi_str_mv 10.3390/en15041369
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_43a601b6018245f284c8345d29d52d52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43a601b6018245f284c8345d29d52d52</doaj_id><sourcerecordid>2632728954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73</originalsourceid><addsrcrecordid>eNpNUdtKAzEQDaJg0b74BQu-CatJJtndPNZ6aaFF8PYappuk3bLd1E360L83WlGHuRxmhjMchpALRq8BFL2xHZNUMCjUERkwpYqc0RKO_-FTMgxhTZMBMAAYkOdJs1zl776NuLTZGBdtyr4zTWx8l41CsCFsbBezuY0rb7JbDNZkaTTftbHJX_yur212hxGzUYftPjThnJw4bIMd_tQz8vZw_zqe5LOnx-l4NMtr4DTmhlvpJK-MWlRljcZSl7B0DoqFq1EaJQQrqRUllgV1QiGjIA2VWAJ1KZ2R6YHXeFzrbd9ssN9rj43-bvh-qbGPTd1aLQALyhYpKi6k45WoKxDScGUkT564Lg9c295_7GyIep2UJUFB8wJ4ySslRdq6OmzVvQ-ht-73KqP66wX67wXwCSnbdlo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632728954</pqid></control><display><type>article</type><title>High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis</title><source>Publicly Available Content (ProQuest)</source><creator>Meng, Xiao-Kai ; Jia, Yan-Bing ; Liu, Zhi-Heng ; Yu, Zhi-Qiang ; Han, Pei-Jie ; Lu, Zhu-Mao ; Jin, Tao</creator><creatorcontrib>Meng, Xiao-Kai ; Jia, Yan-Bing ; Liu, Zhi-Heng ; Yu, Zhi-Qiang ; Han, Pei-Jie ; Lu, Zhu-Mao ; Jin, Tao</creatorcontrib><description>In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo, MCMC) is proposed. The sampling method is used for evaluating the condition of high-voltage cables. The weight vector set obtained by MCMC sampling and the comprehensive degradation degree of the high-voltage cable sample are weighted and summed then compared in pairs to obtain the comprehensive degradation degree result. The status probability value and overall priority ranking probability of the object to be evaluated are obtained based on probability statistics, and the order of maintenance is determined according to the status probability value and the ranking result. It is realized that the cable line that needs to be identified in the follow-up defect is clarified according to the evaluation result. This is helpful for operational and maintenance personnel to more accurately implement the maintenance plan for the cable and improve the operational and maintenance efficiency.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15041369</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cables ; Data analysis ; Electricity distribution ; Evaluation ; high voltage cable ; High voltages ; Maintenance ; Markov chain Monte Carlo ; Markov chains ; Methods ; Ranking ; Sampling ; Sampling methods ; state evaluation ; Statistical analysis ; Voltage ; weight space</subject><ispartof>Energies (Basel), 2022-02, Vol.15 (4), p.1369</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632728954/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632728954?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Meng, Xiao-Kai</creatorcontrib><creatorcontrib>Jia, Yan-Bing</creatorcontrib><creatorcontrib>Liu, Zhi-Heng</creatorcontrib><creatorcontrib>Yu, Zhi-Qiang</creatorcontrib><creatorcontrib>Han, Pei-Jie</creatorcontrib><creatorcontrib>Lu, Zhu-Mao</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><title>High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis</title><title>Energies (Basel)</title><description>In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo, MCMC) is proposed. The sampling method is used for evaluating the condition of high-voltage cables. The weight vector set obtained by MCMC sampling and the comprehensive degradation degree of the high-voltage cable sample are weighted and summed then compared in pairs to obtain the comprehensive degradation degree result. The status probability value and overall priority ranking probability of the object to be evaluated are obtained based on probability statistics, and the order of maintenance is determined according to the status probability value and the ranking result. It is realized that the cable line that needs to be identified in the follow-up defect is clarified according to the evaluation result. This is helpful for operational and maintenance personnel to more accurately implement the maintenance plan for the cable and improve the operational and maintenance efficiency.</description><subject>Cables</subject><subject>Data analysis</subject><subject>Electricity distribution</subject><subject>Evaluation</subject><subject>high voltage cable</subject><subject>High voltages</subject><subject>Maintenance</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Methods</subject><subject>Ranking</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>state evaluation</subject><subject>Statistical analysis</subject><subject>Voltage</subject><subject>weight space</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQDaJg0b74BQu-CatJJtndPNZ6aaFF8PYappuk3bLd1E360L83WlGHuRxmhjMchpALRq8BFL2xHZNUMCjUERkwpYqc0RKO_-FTMgxhTZMBMAAYkOdJs1zl776NuLTZGBdtyr4zTWx8l41CsCFsbBezuY0rb7JbDNZkaTTftbHJX_yur212hxGzUYftPjThnJw4bIMd_tQz8vZw_zqe5LOnx-l4NMtr4DTmhlvpJK-MWlRljcZSl7B0DoqFq1EaJQQrqRUllgV1QiGjIA2VWAJ1KZ2R6YHXeFzrbd9ssN9rj43-bvh-qbGPTd1aLQALyhYpKi6k45WoKxDScGUkT564Lg9c295_7GyIep2UJUFB8wJ4ySslRdq6OmzVvQ-ht-73KqP66wX67wXwCSnbdlo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Meng, Xiao-Kai</creator><creator>Jia, Yan-Bing</creator><creator>Liu, Zhi-Heng</creator><creator>Yu, Zhi-Qiang</creator><creator>Han, Pei-Jie</creator><creator>Lu, Zhu-Mao</creator><creator>Jin, Tao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20220201</creationdate><title>High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis</title><author>Meng, Xiao-Kai ; Jia, Yan-Bing ; Liu, Zhi-Heng ; Yu, Zhi-Qiang ; Han, Pei-Jie ; Lu, Zhu-Mao ; Jin, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cables</topic><topic>Data analysis</topic><topic>Electricity distribution</topic><topic>Evaluation</topic><topic>high voltage cable</topic><topic>High voltages</topic><topic>Maintenance</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Methods</topic><topic>Ranking</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>state evaluation</topic><topic>Statistical analysis</topic><topic>Voltage</topic><topic>weight space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xiao-Kai</creatorcontrib><creatorcontrib>Jia, Yan-Bing</creatorcontrib><creatorcontrib>Liu, Zhi-Heng</creatorcontrib><creatorcontrib>Yu, Zhi-Qiang</creatorcontrib><creatorcontrib>Han, Pei-Jie</creatorcontrib><creatorcontrib>Lu, Zhu-Mao</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xiao-Kai</au><au>Jia, Yan-Bing</au><au>Liu, Zhi-Heng</au><au>Yu, Zhi-Qiang</au><au>Han, Pei-Jie</au><au>Lu, Zhu-Mao</au><au>Jin, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis</atitle><jtitle>Energies (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1369</spage><pages>1369-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In view of the problem that the weight value given by the previous state evaluation method is fixed and single and cannot analyze the influence of the weight vector deviation on the evaluation result, a method based on the weight space Markov chain and Monte Carlo method (Markov chains Monte Carlo, MCMC) is proposed. The sampling method is used for evaluating the condition of high-voltage cables. The weight vector set obtained by MCMC sampling and the comprehensive degradation degree of the high-voltage cable sample are weighted and summed then compared in pairs to obtain the comprehensive degradation degree result. The status probability value and overall priority ranking probability of the object to be evaluated are obtained based on probability statistics, and the order of maintenance is determined according to the status probability value and the ranking result. It is realized that the cable line that needs to be identified in the follow-up defect is clarified according to the evaluation result. This is helpful for operational and maintenance personnel to more accurately implement the maintenance plan for the cable and improve the operational and maintenance efficiency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15041369</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2022-02, Vol.15 (4), p.1369
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_43a601b6018245f284c8345d29d52d52
source Publicly Available Content (ProQuest)
subjects Cables
Data analysis
Electricity distribution
Evaluation
high voltage cable
High voltages
Maintenance
Markov chain Monte Carlo
Markov chains
Methods
Ranking
Sampling
Sampling methods
state evaluation
Statistical analysis
Voltage
weight space
title High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Voltage%20Cable%20Condition%20Assessment%20Method%20Based%20on%20Multi-Source%20Data%20Analysis&rft.jtitle=Energies%20(Basel)&rft.au=Meng,%20Xiao-Kai&rft.date=2022-02-01&rft.volume=15&rft.issue=4&rft.spage=1369&rft.pages=1369-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15041369&rft_dat=%3Cproquest_doaj_%3E2632728954%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-d2e5f528d9b87cade0f8d95ff36bfca5d944170e47a760f49a1035d05a730fa73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632728954&rft_id=info:pmid/&rfr_iscdi=true