Loading…

Analysis of risk factors for liver metastasis in patients with gastric cancer and construction of prediction model: A multicenter study

Background To retrospectively analyze the risk factors of liver metastases in patients with gastric cancer in a single center, and to establish a Nomogram prediction model to predict the occurrence of liver metastases. Methods A total of 96 patients with gastric cancer who were also diagnosed with l...

Full description

Saved in:
Bibliographic Details
Published in:Discover. Oncology 2024-08, Vol.15 (1), p.363-11
Main Authors: Yu, Heng, Jiang, Hang, Lu, Xiaofeng, Bai, Chunhua, Song, Peng, Sun, Feng, Ai, Shichao, Yin, Yi, Hu, Qiongyuan, Liu, Song, Chen, Xin, Du, Junfeng, Shen, Xiaofei, Guan, Wenxian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-d379t-e3bd812d7da89d96f557056beaacc1d5b325147635c06fcf8abf7e68f23898373
container_end_page 11
container_issue 1
container_start_page 363
container_title Discover. Oncology
container_volume 15
creator Yu, Heng
Jiang, Hang
Lu, Xiaofeng
Bai, Chunhua
Song, Peng
Sun, Feng
Ai, Shichao
Yin, Yi
Hu, Qiongyuan
Liu, Song
Chen, Xin
Du, Junfeng
Shen, Xiaofei
Guan, Wenxian
description Background To retrospectively analyze the risk factors of liver metastases in patients with gastric cancer in a single center, and to establish a Nomogram prediction model to predict the occurrence of liver metastases. Methods A total of 96 patients with gastric cancer who were also diagnosed with liver metastasis (GCLM) and treated in our center from January 1, 2010 to December 31, 2020 were included. The clinical data of 1095 patients with gastric cancer who were diagnosed without liver metastases (GC) in our hospital from January 1, 2014 to December 31, 2017 were retrospectively compared by univariate and multivariate logistic regression. 309 patients diagnosed with gastric cancer in another medical center from January 1, 2014 to December 31, 2018 were introduced as external validation cohorts. Results Based on the training cohort, multivariate analysis revealed that tumor site (OR = 0.55, P = 0.046), N stage (OR = 4.95, P = 0.004), gender (OR = 0.04, P = 0.001), OPNI (OR = 0.95, P = 0.041), CEA (OR = 1.01, P = 0.018), CA724 (OR = 1.01, P = 0.006), CA242 (OR = 1.01, P = 0.006), WBC (OR = 1.13, P = 0.024), Hb (OR = 0.98, P 
doi_str_mv 10.1007/s12672-024-01246-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_43a779fd0e8a4b9798d8bc4cdc23cdda</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43a779fd0e8a4b9798d8bc4cdc23cdda</doaj_id><sourcerecordid>3095321685</sourcerecordid><originalsourceid>FETCH-LOGICAL-d379t-e3bd812d7da89d96f557056beaacc1d5b325147635c06fcf8abf7e68f23898373</originalsourceid><addsrcrecordid>eNpdkttqFTEUhgdRbKl9AS8k4I03ozlMTt5IKR4KBW_0OmRy2M12JtkmmZbdF_C1ze5UbYVAkrX-9bEW6--6lwi-RRDydwVhxnEP8dBDhAfW3z7pjjEnsGcQoacP3kfdaSlbCCGmiBBIn3dHRKJWTIfj7tdZ1NO-hAKSBzmUH8BrU1MuwKcMpnDtMphd1aWdJgoR7HQNLtYCbkK9ApuWycEAo6NpUh0tMCm22GJqSPFA3WVnw_qbk3XTe3AG5mWqwTRMqyl1sfsX3TOvp-JO7--T7vunj9_Ov_SXXz9fnJ9d9pZwWXtHRisQttxqIa1knlIOKRud1sYgS0fShhw4I9RA5o0XevTcMeExEVIQTk66i5Vrk96qXQ6zznuVdFB3gZQ3SufW2uTUQDTn0lvohB5GyaWwYjSDsQYTY61urA8ra7eMs7OHcbKeHkEfZ2K4Upt0rVDbg4QQNcKbe0JOPxdXqppDMW6adHRpKYpASRknkh6kr_-TbtOS2_JWFcGICdpUrx629LeXPwtvArIKSkvFjcv_MAiqg7PU6izVnKXunKVuyW_cmcJD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095321685</pqid></control><display><type>article</type><title>Analysis of risk factors for liver metastasis in patients with gastric cancer and construction of prediction model: A multicenter study</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yu, Heng ; Jiang, Hang ; Lu, Xiaofeng ; Bai, Chunhua ; Song, Peng ; Sun, Feng ; Ai, Shichao ; Yin, Yi ; Hu, Qiongyuan ; Liu, Song ; Chen, Xin ; Du, Junfeng ; Shen, Xiaofei ; Guan, Wenxian</creator><creatorcontrib>Yu, Heng ; Jiang, Hang ; Lu, Xiaofeng ; Bai, Chunhua ; Song, Peng ; Sun, Feng ; Ai, Shichao ; Yin, Yi ; Hu, Qiongyuan ; Liu, Song ; Chen, Xin ; Du, Junfeng ; Shen, Xiaofei ; Guan, Wenxian</creatorcontrib><description>Background To retrospectively analyze the risk factors of liver metastases in patients with gastric cancer in a single center, and to establish a Nomogram prediction model to predict the occurrence of liver metastases. Methods A total of 96 patients with gastric cancer who were also diagnosed with liver metastasis (GCLM) and treated in our center from January 1, 2010 to December 31, 2020 were included. The clinical data of 1095 patients with gastric cancer who were diagnosed without liver metastases (GC) in our hospital from January 1, 2014 to December 31, 2017 were retrospectively compared by univariate and multivariate logistic regression. 309 patients diagnosed with gastric cancer in another medical center from January 1, 2014 to December 31, 2018 were introduced as external validation cohorts. Results Based on the training cohort, multivariate analysis revealed that tumor site (OR = 0.55, P = 0.046), N stage (OR = 4.95, P = 0.004), gender (OR = 0.04, P = 0.001), OPNI (OR = 0.95, P = 0.041), CEA (OR = 1.01, P = 0.018), CA724 (OR = 1.01, P = 0.006), CA242 (OR = 1.01, P = 0.006), WBC (OR = 1.13, P = 0.024), Hb (OR = 0.98, P &lt; 0.001) were independent risk factors for liver metastasis in patients with gastric cancer, and Nomogram was established based on this analysis (C-statistics = 0.911, 95%CI 0.880–0.958), and the C-statistics of the external validation cohorts achieved 0.926. ROC analysis and decision curve analysis (DCA) revealed that the nomogram provided superior diagnostic value than single variety. Conclusions By innovatively introducing a new tumor location classification method, systemic inflammatory response indicators such as NLR and PLR, and nutritional index OPNI, the risk factors of gastric cancer liver metastasis were determined and a predictive Nomogram model was established, which can provide clinical prediction for patients with gastric cancer liver metastasis.</description><identifier>ISSN: 2730-6011</identifier><identifier>EISSN: 2730-6011</identifier><identifier>DOI: 10.1007/s12672-024-01246-z</identifier><identifier>PMID: 39167254</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antigens ; Cancer Research ; Cancer therapies ; Carbohydrates ; Chemotherapy ; Gastric cancer ; Internal Medicine ; Liver ; Liver metastases ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; Metastasis ; Molecular Medicine ; Nomograms ; Oncology ; Prediction model ; Radiotherapy ; Risk factors ; Surgery ; Surgical Oncology ; Surgical outcomes</subject><ispartof>Discover. Oncology, 2024-08, Vol.15 (1), p.363-11</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-d379t-e3bd812d7da89d96f557056beaacc1d5b325147635c06fcf8abf7e68f23898373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3095321685/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3095321685?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39167254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Heng</creatorcontrib><creatorcontrib>Jiang, Hang</creatorcontrib><creatorcontrib>Lu, Xiaofeng</creatorcontrib><creatorcontrib>Bai, Chunhua</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><creatorcontrib>Sun, Feng</creatorcontrib><creatorcontrib>Ai, Shichao</creatorcontrib><creatorcontrib>Yin, Yi</creatorcontrib><creatorcontrib>Hu, Qiongyuan</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Du, Junfeng</creatorcontrib><creatorcontrib>Shen, Xiaofei</creatorcontrib><creatorcontrib>Guan, Wenxian</creatorcontrib><title>Analysis of risk factors for liver metastasis in patients with gastric cancer and construction of prediction model: A multicenter study</title><title>Discover. Oncology</title><addtitle>Discov Onc</addtitle><addtitle>Discov Oncol</addtitle><description>Background To retrospectively analyze the risk factors of liver metastases in patients with gastric cancer in a single center, and to establish a Nomogram prediction model to predict the occurrence of liver metastases. Methods A total of 96 patients with gastric cancer who were also diagnosed with liver metastasis (GCLM) and treated in our center from January 1, 2010 to December 31, 2020 were included. The clinical data of 1095 patients with gastric cancer who were diagnosed without liver metastases (GC) in our hospital from January 1, 2014 to December 31, 2017 were retrospectively compared by univariate and multivariate logistic regression. 309 patients diagnosed with gastric cancer in another medical center from January 1, 2014 to December 31, 2018 were introduced as external validation cohorts. Results Based on the training cohort, multivariate analysis revealed that tumor site (OR = 0.55, P = 0.046), N stage (OR = 4.95, P = 0.004), gender (OR = 0.04, P = 0.001), OPNI (OR = 0.95, P = 0.041), CEA (OR = 1.01, P = 0.018), CA724 (OR = 1.01, P = 0.006), CA242 (OR = 1.01, P = 0.006), WBC (OR = 1.13, P = 0.024), Hb (OR = 0.98, P &lt; 0.001) were independent risk factors for liver metastasis in patients with gastric cancer, and Nomogram was established based on this analysis (C-statistics = 0.911, 95%CI 0.880–0.958), and the C-statistics of the external validation cohorts achieved 0.926. ROC analysis and decision curve analysis (DCA) revealed that the nomogram provided superior diagnostic value than single variety. Conclusions By innovatively introducing a new tumor location classification method, systemic inflammatory response indicators such as NLR and PLR, and nutritional index OPNI, the risk factors of gastric cancer liver metastasis were determined and a predictive Nomogram model was established, which can provide clinical prediction for patients with gastric cancer liver metastasis.</description><subject>Antigens</subject><subject>Cancer Research</subject><subject>Cancer therapies</subject><subject>Carbohydrates</subject><subject>Chemotherapy</subject><subject>Gastric cancer</subject><subject>Internal Medicine</subject><subject>Liver</subject><subject>Liver metastases</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastasis</subject><subject>Molecular Medicine</subject><subject>Nomograms</subject><subject>Oncology</subject><subject>Prediction model</subject><subject>Radiotherapy</subject><subject>Risk factors</subject><subject>Surgery</subject><subject>Surgical Oncology</subject><subject>Surgical outcomes</subject><issn>2730-6011</issn><issn>2730-6011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkttqFTEUhgdRbKl9AS8k4I03ozlMTt5IKR4KBW_0OmRy2M12JtkmmZbdF_C1ze5UbYVAkrX-9bEW6--6lwi-RRDydwVhxnEP8dBDhAfW3z7pjjEnsGcQoacP3kfdaSlbCCGmiBBIn3dHRKJWTIfj7tdZ1NO-hAKSBzmUH8BrU1MuwKcMpnDtMphd1aWdJgoR7HQNLtYCbkK9ApuWycEAo6NpUh0tMCm22GJqSPFA3WVnw_qbk3XTe3AG5mWqwTRMqyl1sfsX3TOvp-JO7--T7vunj9_Ov_SXXz9fnJ9d9pZwWXtHRisQttxqIa1knlIOKRud1sYgS0fShhw4I9RA5o0XevTcMeExEVIQTk66i5Vrk96qXQ6zznuVdFB3gZQ3SufW2uTUQDTn0lvohB5GyaWwYjSDsQYTY61urA8ra7eMs7OHcbKeHkEfZ2K4Upt0rVDbg4QQNcKbe0JOPxdXqppDMW6adHRpKYpASRknkh6kr_-TbtOS2_JWFcGICdpUrx629LeXPwtvArIKSkvFjcv_MAiqg7PU6izVnKXunKVuyW_cmcJD</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Yu, Heng</creator><creator>Jiang, Hang</creator><creator>Lu, Xiaofeng</creator><creator>Bai, Chunhua</creator><creator>Song, Peng</creator><creator>Sun, Feng</creator><creator>Ai, Shichao</creator><creator>Yin, Yi</creator><creator>Hu, Qiongyuan</creator><creator>Liu, Song</creator><creator>Chen, Xin</creator><creator>Du, Junfeng</creator><creator>Shen, Xiaofei</creator><creator>Guan, Wenxian</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240821</creationdate><title>Analysis of risk factors for liver metastasis in patients with gastric cancer and construction of prediction model: A multicenter study</title><author>Yu, Heng ; Jiang, Hang ; Lu, Xiaofeng ; Bai, Chunhua ; Song, Peng ; Sun, Feng ; Ai, Shichao ; Yin, Yi ; Hu, Qiongyuan ; Liu, Song ; Chen, Xin ; Du, Junfeng ; Shen, Xiaofei ; Guan, Wenxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d379t-e3bd812d7da89d96f557056beaacc1d5b325147635c06fcf8abf7e68f23898373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antigens</topic><topic>Cancer Research</topic><topic>Cancer therapies</topic><topic>Carbohydrates</topic><topic>Chemotherapy</topic><topic>Gastric cancer</topic><topic>Internal Medicine</topic><topic>Liver</topic><topic>Liver metastases</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastasis</topic><topic>Molecular Medicine</topic><topic>Nomograms</topic><topic>Oncology</topic><topic>Prediction model</topic><topic>Radiotherapy</topic><topic>Risk factors</topic><topic>Surgery</topic><topic>Surgical Oncology</topic><topic>Surgical outcomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Heng</creatorcontrib><creatorcontrib>Jiang, Hang</creatorcontrib><creatorcontrib>Lu, Xiaofeng</creatorcontrib><creatorcontrib>Bai, Chunhua</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><creatorcontrib>Sun, Feng</creatorcontrib><creatorcontrib>Ai, Shichao</creatorcontrib><creatorcontrib>Yin, Yi</creatorcontrib><creatorcontrib>Hu, Qiongyuan</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Du, Junfeng</creatorcontrib><creatorcontrib>Shen, Xiaofei</creatorcontrib><creatorcontrib>Guan, Wenxian</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Discover. Oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Heng</au><au>Jiang, Hang</au><au>Lu, Xiaofeng</au><au>Bai, Chunhua</au><au>Song, Peng</au><au>Sun, Feng</au><au>Ai, Shichao</au><au>Yin, Yi</au><au>Hu, Qiongyuan</au><au>Liu, Song</au><au>Chen, Xin</au><au>Du, Junfeng</au><au>Shen, Xiaofei</au><au>Guan, Wenxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of risk factors for liver metastasis in patients with gastric cancer and construction of prediction model: A multicenter study</atitle><jtitle>Discover. Oncology</jtitle><stitle>Discov Onc</stitle><addtitle>Discov Oncol</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>363</spage><epage>11</epage><pages>363-11</pages><issn>2730-6011</issn><eissn>2730-6011</eissn><abstract>Background To retrospectively analyze the risk factors of liver metastases in patients with gastric cancer in a single center, and to establish a Nomogram prediction model to predict the occurrence of liver metastases. Methods A total of 96 patients with gastric cancer who were also diagnosed with liver metastasis (GCLM) and treated in our center from January 1, 2010 to December 31, 2020 were included. The clinical data of 1095 patients with gastric cancer who were diagnosed without liver metastases (GC) in our hospital from January 1, 2014 to December 31, 2017 were retrospectively compared by univariate and multivariate logistic regression. 309 patients diagnosed with gastric cancer in another medical center from January 1, 2014 to December 31, 2018 were introduced as external validation cohorts. Results Based on the training cohort, multivariate analysis revealed that tumor site (OR = 0.55, P = 0.046), N stage (OR = 4.95, P = 0.004), gender (OR = 0.04, P = 0.001), OPNI (OR = 0.95, P = 0.041), CEA (OR = 1.01, P = 0.018), CA724 (OR = 1.01, P = 0.006), CA242 (OR = 1.01, P = 0.006), WBC (OR = 1.13, P = 0.024), Hb (OR = 0.98, P &lt; 0.001) were independent risk factors for liver metastasis in patients with gastric cancer, and Nomogram was established based on this analysis (C-statistics = 0.911, 95%CI 0.880–0.958), and the C-statistics of the external validation cohorts achieved 0.926. ROC analysis and decision curve analysis (DCA) revealed that the nomogram provided superior diagnostic value than single variety. Conclusions By innovatively introducing a new tumor location classification method, systemic inflammatory response indicators such as NLR and PLR, and nutritional index OPNI, the risk factors of gastric cancer liver metastasis were determined and a predictive Nomogram model was established, which can provide clinical prediction for patients with gastric cancer liver metastasis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39167254</pmid><doi>10.1007/s12672-024-01246-z</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2730-6011
ispartof Discover. Oncology, 2024-08, Vol.15 (1), p.363-11
issn 2730-6011
2730-6011
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_43a779fd0e8a4b9798d8bc4cdc23cdda
source Publicly Available Content Database; PubMed Central
subjects Antigens
Cancer Research
Cancer therapies
Carbohydrates
Chemotherapy
Gastric cancer
Internal Medicine
Liver
Liver metastases
Medical prognosis
Medicine
Medicine & Public Health
Metastasis
Molecular Medicine
Nomograms
Oncology
Prediction model
Radiotherapy
Risk factors
Surgery
Surgical Oncology
Surgical outcomes
title Analysis of risk factors for liver metastasis in patients with gastric cancer and construction of prediction model: A multicenter study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20risk%20factors%20for%20liver%20metastasis%20in%20patients%20with%20gastric%20cancer%20and%20construction%20of%20prediction%20model:%20A%20multicenter%20study&rft.jtitle=Discover.%20Oncology&rft.au=Yu,%20Heng&rft.date=2024-08-21&rft.volume=15&rft.issue=1&rft.spage=363&rft.epage=11&rft.pages=363-11&rft.issn=2730-6011&rft.eissn=2730-6011&rft_id=info:doi/10.1007/s12672-024-01246-z&rft_dat=%3Cproquest_doaj_%3E3095321685%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d379t-e3bd812d7da89d96f557056beaacc1d5b325147635c06fcf8abf7e68f23898373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095321685&rft_id=info:pmid/39167254&rfr_iscdi=true