Loading…
Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds
A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and fold...
Saved in:
Published in: | Nature communications 2016-07, Vol.7 (1), p.11802-11802, Article 11802 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3 |
container_end_page | 11802 |
container_issue | 1 |
container_start_page | 11802 |
container_title | Nature communications |
container_volume | 7 |
creator | Zeng, Songshan Zhang, Dianyun Huang, Wenhan Wang, Zhaofeng Freire, Stephan G. Yu, Xiaoyuan Smith, Andrew T. Huang, Emily Y. Nguon, Helen Sun, Luyi |
description | A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns.
Muscle-controlled changes in surface structures are employed in nature to achieve rapid, reversible changes in colour and transparency. Here the authors develop a simple, bilayer platform capable of several distinct analogous mechanochromic behaviours. |
doi_str_mv | 10.1038/ncomms11802 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_43ad8522655d428a9ef095d3320f6e03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43ad8522655d428a9ef095d3320f6e03</doaj_id><sourcerecordid>4111268291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3</originalsourceid><addsrcrecordid>eNptks1rFDEUwINYbNn25F0GvAg6Nd_JXIRa_CgUvOhNCJnkzW7WmWRNZhf87013a9kWc0nI--WXl_eC0EuCLwlm-n10aZoKIRrTZ-iMYk5aoih7frQ-RRelrHEdrCOa8xfolCqmO67xGfr5MaQ2xLIJGXxTIJYwhx00Nvomww5yCf0IzQRuZWNyq5ymUKbS7IJtypxtiK2HDUQPcW5ctu5X2Z8d0ujLOToZ7Fjg4n5eoB-fP32__trefvtyc3112zqh9Nz22jIsetrJ3iuQlkqPO6cJt055QRkwOdDeSg1CKg-dlMqpwWKGneW9GtgC3Ry8Ptm12eQw2fzHJBvMfiPlpbF5Dm4Ew5n1WlAqhfCcatvBgDvhGaN4kIBZdX04uDbbfgLv6ruyHR9JH0diWJll2hnecYK5qoI394Kcfm-hzKZWzME42ghpW0xtFVMdZ3v09RN0nbY51lLdUZQrIWr_FujtgXI5lZJheEiGYHP3CczRJ6j0q-P8H9h_La_AuwNQaiguIR9d-h_fX6iXvfo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802475572</pqid></control><display><type>article</type><title>Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds</title><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Zeng, Songshan ; Zhang, Dianyun ; Huang, Wenhan ; Wang, Zhaofeng ; Freire, Stephan G. ; Yu, Xiaoyuan ; Smith, Andrew T. ; Huang, Emily Y. ; Nguon, Helen ; Sun, Luyi</creator><creatorcontrib>Zeng, Songshan ; Zhang, Dianyun ; Huang, Wenhan ; Wang, Zhaofeng ; Freire, Stephan G. ; Yu, Xiaoyuan ; Smith, Andrew T. ; Huang, Emily Y. ; Nguon, Helen ; Sun, Luyi</creatorcontrib><description>A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns.
Muscle-controlled changes in surface structures are employed in nature to achieve rapid, reversible changes in colour and transparency. Here the authors develop a simple, bilayer platform capable of several distinct analogous mechanochromic behaviours.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms11802</identifier><identifier>PMID: 27389480</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/766/400 ; Animals ; Aquatic Organisms - chemistry ; Aquatic Organisms - physiology ; Biomechanical Phenomena ; Color ; Control surfaces ; Cracks ; Decapodiformes - chemistry ; Decapodiformes - physiology ; Deformation ; Design ; Encryption ; Engineering ; Fluorescein - chemistry ; Fluorescence ; Humanities and Social Sciences ; Light ; Luminescence ; Marine organisms ; Mechanoluminescence ; multidisciplinary ; Muscles ; Optical Devices ; Polyvinyl alcohol ; Polyvinyl Alcohol - chemistry ; Science ; Science (multidisciplinary) ; Sensitivity ; Silanes - chemistry ; Silicates - chemistry ; Stress, Mechanical ; Tactics ; Thin films ; Vinyl Compounds - chemistry</subject><ispartof>Nature communications, 2016-07, Vol.7 (1), p.11802-11802, Article 11802</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3</citedby><cites>FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1802475572/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1802475572?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27389480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Songshan</creatorcontrib><creatorcontrib>Zhang, Dianyun</creatorcontrib><creatorcontrib>Huang, Wenhan</creatorcontrib><creatorcontrib>Wang, Zhaofeng</creatorcontrib><creatorcontrib>Freire, Stephan G.</creatorcontrib><creatorcontrib>Yu, Xiaoyuan</creatorcontrib><creatorcontrib>Smith, Andrew T.</creatorcontrib><creatorcontrib>Huang, Emily Y.</creatorcontrib><creatorcontrib>Nguon, Helen</creatorcontrib><creatorcontrib>Sun, Luyi</creatorcontrib><title>Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns.
Muscle-controlled changes in surface structures are employed in nature to achieve rapid, reversible changes in colour and transparency. Here the authors develop a simple, bilayer platform capable of several distinct analogous mechanochromic behaviours.</description><subject>639/301/1023/303</subject><subject>639/766/400</subject><subject>Animals</subject><subject>Aquatic Organisms - chemistry</subject><subject>Aquatic Organisms - physiology</subject><subject>Biomechanical Phenomena</subject><subject>Color</subject><subject>Control surfaces</subject><subject>Cracks</subject><subject>Decapodiformes - chemistry</subject><subject>Decapodiformes - physiology</subject><subject>Deformation</subject><subject>Design</subject><subject>Encryption</subject><subject>Engineering</subject><subject>Fluorescein - chemistry</subject><subject>Fluorescence</subject><subject>Humanities and Social Sciences</subject><subject>Light</subject><subject>Luminescence</subject><subject>Marine organisms</subject><subject>Mechanoluminescence</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Optical Devices</subject><subject>Polyvinyl alcohol</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensitivity</subject><subject>Silanes - chemistry</subject><subject>Silicates - chemistry</subject><subject>Stress, Mechanical</subject><subject>Tactics</subject><subject>Thin films</subject><subject>Vinyl Compounds - chemistry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1rFDEUwINYbNn25F0GvAg6Nd_JXIRa_CgUvOhNCJnkzW7WmWRNZhf87013a9kWc0nI--WXl_eC0EuCLwlm-n10aZoKIRrTZ-iMYk5aoih7frQ-RRelrHEdrCOa8xfolCqmO67xGfr5MaQ2xLIJGXxTIJYwhx00Nvomww5yCf0IzQRuZWNyq5ymUKbS7IJtypxtiK2HDUQPcW5ctu5X2Z8d0ujLOToZ7Fjg4n5eoB-fP32__trefvtyc3112zqh9Nz22jIsetrJ3iuQlkqPO6cJt055QRkwOdDeSg1CKg-dlMqpwWKGneW9GtgC3Ry8Ptm12eQw2fzHJBvMfiPlpbF5Dm4Ew5n1WlAqhfCcatvBgDvhGaN4kIBZdX04uDbbfgLv6ruyHR9JH0diWJll2hnecYK5qoI394Kcfm-hzKZWzME42ghpW0xtFVMdZ3v09RN0nbY51lLdUZQrIWr_FujtgXI5lZJheEiGYHP3CczRJ6j0q-P8H9h_La_AuwNQaiguIR9d-h_fX6iXvfo</recordid><startdate>20160708</startdate><enddate>20160708</enddate><creator>Zeng, Songshan</creator><creator>Zhang, Dianyun</creator><creator>Huang, Wenhan</creator><creator>Wang, Zhaofeng</creator><creator>Freire, Stephan G.</creator><creator>Yu, Xiaoyuan</creator><creator>Smith, Andrew T.</creator><creator>Huang, Emily Y.</creator><creator>Nguon, Helen</creator><creator>Sun, Luyi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160708</creationdate><title>Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds</title><author>Zeng, Songshan ; Zhang, Dianyun ; Huang, Wenhan ; Wang, Zhaofeng ; Freire, Stephan G. ; Yu, Xiaoyuan ; Smith, Andrew T. ; Huang, Emily Y. ; Nguon, Helen ; Sun, Luyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/1023/303</topic><topic>639/766/400</topic><topic>Animals</topic><topic>Aquatic Organisms - chemistry</topic><topic>Aquatic Organisms - physiology</topic><topic>Biomechanical Phenomena</topic><topic>Color</topic><topic>Control surfaces</topic><topic>Cracks</topic><topic>Decapodiformes - chemistry</topic><topic>Decapodiformes - physiology</topic><topic>Deformation</topic><topic>Design</topic><topic>Encryption</topic><topic>Engineering</topic><topic>Fluorescein - chemistry</topic><topic>Fluorescence</topic><topic>Humanities and Social Sciences</topic><topic>Light</topic><topic>Luminescence</topic><topic>Marine organisms</topic><topic>Mechanoluminescence</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Optical Devices</topic><topic>Polyvinyl alcohol</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensitivity</topic><topic>Silanes - chemistry</topic><topic>Silicates - chemistry</topic><topic>Stress, Mechanical</topic><topic>Tactics</topic><topic>Thin films</topic><topic>Vinyl Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Songshan</creatorcontrib><creatorcontrib>Zhang, Dianyun</creatorcontrib><creatorcontrib>Huang, Wenhan</creatorcontrib><creatorcontrib>Wang, Zhaofeng</creatorcontrib><creatorcontrib>Freire, Stephan G.</creatorcontrib><creatorcontrib>Yu, Xiaoyuan</creatorcontrib><creatorcontrib>Smith, Andrew T.</creatorcontrib><creatorcontrib>Huang, Emily Y.</creatorcontrib><creatorcontrib>Nguon, Helen</creatorcontrib><creatorcontrib>Sun, Luyi</creatorcontrib><collection>SpringerOpen website</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Songshan</au><au>Zhang, Dianyun</au><au>Huang, Wenhan</au><au>Wang, Zhaofeng</au><au>Freire, Stephan G.</au><au>Yu, Xiaoyuan</au><au>Smith, Andrew T.</au><au>Huang, Emily Y.</au><au>Nguon, Helen</au><au>Sun, Luyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-07-08</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11802</spage><epage>11802</epage><pages>11802-11802</pages><artnum>11802</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns.
Muscle-controlled changes in surface structures are employed in nature to achieve rapid, reversible changes in colour and transparency. Here the authors develop a simple, bilayer platform capable of several distinct analogous mechanochromic behaviours.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27389480</pmid><doi>10.1038/ncomms11802</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-07, Vol.7 (1), p.11802-11802, Article 11802 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_43ad8522655d428a9ef095d3320f6e03 |
source | PubMed Central(OpenAccess); Nature; Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database |
subjects | 639/301/1023/303 639/766/400 Animals Aquatic Organisms - chemistry Aquatic Organisms - physiology Biomechanical Phenomena Color Control surfaces Cracks Decapodiformes - chemistry Decapodiformes - physiology Deformation Design Encryption Engineering Fluorescein - chemistry Fluorescence Humanities and Social Sciences Light Luminescence Marine organisms Mechanoluminescence multidisciplinary Muscles Optical Devices Polyvinyl alcohol Polyvinyl Alcohol - chemistry Science Science (multidisciplinary) Sensitivity Silanes - chemistry Silicates - chemistry Stress, Mechanical Tactics Thin films Vinyl Compounds - chemistry |
title | Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20sensitive%20and%20reversible%20mechanochromisms%20via%20strain-dependent%20cracks%20and%20folds&rft.jtitle=Nature%20communications&rft.au=Zeng,%20Songshan&rft.date=2016-07-08&rft.volume=7&rft.issue=1&rft.spage=11802&rft.epage=11802&rft.pages=11802-11802&rft.artnum=11802&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms11802&rft_dat=%3Cproquest_doaj_%3E4111268291%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1802475572&rft_id=info:pmid/27389480&rfr_iscdi=true |