Loading…

Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds

A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and fold...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-07, Vol.7 (1), p.11802-11802, Article 11802
Main Authors: Zeng, Songshan, Zhang, Dianyun, Huang, Wenhan, Wang, Zhaofeng, Freire, Stephan G., Yu, Xiaoyuan, Smith, Andrew T., Huang, Emily Y., Nguon, Helen, Sun, Luyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3
cites cdi_FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3
container_end_page 11802
container_issue 1
container_start_page 11802
container_title Nature communications
container_volume 7
creator Zeng, Songshan
Zhang, Dianyun
Huang, Wenhan
Wang, Zhaofeng
Freire, Stephan G.
Yu, Xiaoyuan
Smith, Andrew T.
Huang, Emily Y.
Nguon, Helen
Sun, Luyi
description A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns. Muscle-controlled changes in surface structures are employed in nature to achieve rapid, reversible changes in colour and transparency. Here the authors develop a simple, bilayer platform capable of several distinct analogous mechanochromic behaviours.
doi_str_mv 10.1038/ncomms11802
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_43ad8522655d428a9ef095d3320f6e03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43ad8522655d428a9ef095d3320f6e03</doaj_id><sourcerecordid>4111268291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3</originalsourceid><addsrcrecordid>eNptks1rFDEUwINYbNn25F0GvAg6Nd_JXIRa_CgUvOhNCJnkzW7WmWRNZhf87013a9kWc0nI--WXl_eC0EuCLwlm-n10aZoKIRrTZ-iMYk5aoih7frQ-RRelrHEdrCOa8xfolCqmO67xGfr5MaQ2xLIJGXxTIJYwhx00Nvomww5yCf0IzQRuZWNyq5ymUKbS7IJtypxtiK2HDUQPcW5ctu5X2Z8d0ujLOToZ7Fjg4n5eoB-fP32__trefvtyc3112zqh9Nz22jIsetrJ3iuQlkqPO6cJt055QRkwOdDeSg1CKg-dlMqpwWKGneW9GtgC3Ry8Ptm12eQw2fzHJBvMfiPlpbF5Dm4Ew5n1WlAqhfCcatvBgDvhGaN4kIBZdX04uDbbfgLv6ruyHR9JH0diWJll2hnecYK5qoI394Kcfm-hzKZWzME42ghpW0xtFVMdZ3v09RN0nbY51lLdUZQrIWr_FujtgXI5lZJheEiGYHP3CczRJ6j0q-P8H9h_La_AuwNQaiguIR9d-h_fX6iXvfo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802475572</pqid></control><display><type>article</type><title>Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds</title><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Zeng, Songshan ; Zhang, Dianyun ; Huang, Wenhan ; Wang, Zhaofeng ; Freire, Stephan G. ; Yu, Xiaoyuan ; Smith, Andrew T. ; Huang, Emily Y. ; Nguon, Helen ; Sun, Luyi</creator><creatorcontrib>Zeng, Songshan ; Zhang, Dianyun ; Huang, Wenhan ; Wang, Zhaofeng ; Freire, Stephan G. ; Yu, Xiaoyuan ; Smith, Andrew T. ; Huang, Emily Y. ; Nguon, Helen ; Sun, Luyi</creatorcontrib><description>A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns. Muscle-controlled changes in surface structures are employed in nature to achieve rapid, reversible changes in colour and transparency. Here the authors develop a simple, bilayer platform capable of several distinct analogous mechanochromic behaviours.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms11802</identifier><identifier>PMID: 27389480</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/766/400 ; Animals ; Aquatic Organisms - chemistry ; Aquatic Organisms - physiology ; Biomechanical Phenomena ; Color ; Control surfaces ; Cracks ; Decapodiformes - chemistry ; Decapodiformes - physiology ; Deformation ; Design ; Encryption ; Engineering ; Fluorescein - chemistry ; Fluorescence ; Humanities and Social Sciences ; Light ; Luminescence ; Marine organisms ; Mechanoluminescence ; multidisciplinary ; Muscles ; Optical Devices ; Polyvinyl alcohol ; Polyvinyl Alcohol - chemistry ; Science ; Science (multidisciplinary) ; Sensitivity ; Silanes - chemistry ; Silicates - chemistry ; Stress, Mechanical ; Tactics ; Thin films ; Vinyl Compounds - chemistry</subject><ispartof>Nature communications, 2016-07, Vol.7 (1), p.11802-11802, Article 11802</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3</citedby><cites>FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1802475572/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1802475572?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27389480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Songshan</creatorcontrib><creatorcontrib>Zhang, Dianyun</creatorcontrib><creatorcontrib>Huang, Wenhan</creatorcontrib><creatorcontrib>Wang, Zhaofeng</creatorcontrib><creatorcontrib>Freire, Stephan G.</creatorcontrib><creatorcontrib>Yu, Xiaoyuan</creatorcontrib><creatorcontrib>Smith, Andrew T.</creatorcontrib><creatorcontrib>Huang, Emily Y.</creatorcontrib><creatorcontrib>Nguon, Helen</creatorcontrib><creatorcontrib>Sun, Luyi</creatorcontrib><title>Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns. Muscle-controlled changes in surface structures are employed in nature to achieve rapid, reversible changes in colour and transparency. Here the authors develop a simple, bilayer platform capable of several distinct analogous mechanochromic behaviours.</description><subject>639/301/1023/303</subject><subject>639/766/400</subject><subject>Animals</subject><subject>Aquatic Organisms - chemistry</subject><subject>Aquatic Organisms - physiology</subject><subject>Biomechanical Phenomena</subject><subject>Color</subject><subject>Control surfaces</subject><subject>Cracks</subject><subject>Decapodiformes - chemistry</subject><subject>Decapodiformes - physiology</subject><subject>Deformation</subject><subject>Design</subject><subject>Encryption</subject><subject>Engineering</subject><subject>Fluorescein - chemistry</subject><subject>Fluorescence</subject><subject>Humanities and Social Sciences</subject><subject>Light</subject><subject>Luminescence</subject><subject>Marine organisms</subject><subject>Mechanoluminescence</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Optical Devices</subject><subject>Polyvinyl alcohol</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensitivity</subject><subject>Silanes - chemistry</subject><subject>Silicates - chemistry</subject><subject>Stress, Mechanical</subject><subject>Tactics</subject><subject>Thin films</subject><subject>Vinyl Compounds - chemistry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1rFDEUwINYbNn25F0GvAg6Nd_JXIRa_CgUvOhNCJnkzW7WmWRNZhf87013a9kWc0nI--WXl_eC0EuCLwlm-n10aZoKIRrTZ-iMYk5aoih7frQ-RRelrHEdrCOa8xfolCqmO67xGfr5MaQ2xLIJGXxTIJYwhx00Nvomww5yCf0IzQRuZWNyq5ymUKbS7IJtypxtiK2HDUQPcW5ctu5X2Z8d0ujLOToZ7Fjg4n5eoB-fP32__trefvtyc3112zqh9Nz22jIsetrJ3iuQlkqPO6cJt055QRkwOdDeSg1CKg-dlMqpwWKGneW9GtgC3Ry8Ptm12eQw2fzHJBvMfiPlpbF5Dm4Ew5n1WlAqhfCcatvBgDvhGaN4kIBZdX04uDbbfgLv6ruyHR9JH0diWJll2hnecYK5qoI394Kcfm-hzKZWzME42ghpW0xtFVMdZ3v09RN0nbY51lLdUZQrIWr_FujtgXI5lZJheEiGYHP3CczRJ6j0q-P8H9h_La_AuwNQaiguIR9d-h_fX6iXvfo</recordid><startdate>20160708</startdate><enddate>20160708</enddate><creator>Zeng, Songshan</creator><creator>Zhang, Dianyun</creator><creator>Huang, Wenhan</creator><creator>Wang, Zhaofeng</creator><creator>Freire, Stephan G.</creator><creator>Yu, Xiaoyuan</creator><creator>Smith, Andrew T.</creator><creator>Huang, Emily Y.</creator><creator>Nguon, Helen</creator><creator>Sun, Luyi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160708</creationdate><title>Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds</title><author>Zeng, Songshan ; Zhang, Dianyun ; Huang, Wenhan ; Wang, Zhaofeng ; Freire, Stephan G. ; Yu, Xiaoyuan ; Smith, Andrew T. ; Huang, Emily Y. ; Nguon, Helen ; Sun, Luyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/1023/303</topic><topic>639/766/400</topic><topic>Animals</topic><topic>Aquatic Organisms - chemistry</topic><topic>Aquatic Organisms - physiology</topic><topic>Biomechanical Phenomena</topic><topic>Color</topic><topic>Control surfaces</topic><topic>Cracks</topic><topic>Decapodiformes - chemistry</topic><topic>Decapodiformes - physiology</topic><topic>Deformation</topic><topic>Design</topic><topic>Encryption</topic><topic>Engineering</topic><topic>Fluorescein - chemistry</topic><topic>Fluorescence</topic><topic>Humanities and Social Sciences</topic><topic>Light</topic><topic>Luminescence</topic><topic>Marine organisms</topic><topic>Mechanoluminescence</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Optical Devices</topic><topic>Polyvinyl alcohol</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensitivity</topic><topic>Silanes - chemistry</topic><topic>Silicates - chemistry</topic><topic>Stress, Mechanical</topic><topic>Tactics</topic><topic>Thin films</topic><topic>Vinyl Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Songshan</creatorcontrib><creatorcontrib>Zhang, Dianyun</creatorcontrib><creatorcontrib>Huang, Wenhan</creatorcontrib><creatorcontrib>Wang, Zhaofeng</creatorcontrib><creatorcontrib>Freire, Stephan G.</creatorcontrib><creatorcontrib>Yu, Xiaoyuan</creatorcontrib><creatorcontrib>Smith, Andrew T.</creatorcontrib><creatorcontrib>Huang, Emily Y.</creatorcontrib><creatorcontrib>Nguon, Helen</creatorcontrib><creatorcontrib>Sun, Luyi</creatorcontrib><collection>SpringerOpen website</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Songshan</au><au>Zhang, Dianyun</au><au>Huang, Wenhan</au><au>Wang, Zhaofeng</au><au>Freire, Stephan G.</au><au>Yu, Xiaoyuan</au><au>Smith, Andrew T.</au><au>Huang, Emily Y.</au><au>Nguon, Helen</au><au>Sun, Luyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-07-08</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11802</spage><epage>11802</epage><pages>11802-11802</pages><artnum>11802</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns. Muscle-controlled changes in surface structures are employed in nature to achieve rapid, reversible changes in colour and transparency. Here the authors develop a simple, bilayer platform capable of several distinct analogous mechanochromic behaviours.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27389480</pmid><doi>10.1038/ncomms11802</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-07, Vol.7 (1), p.11802-11802, Article 11802
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_43ad8522655d428a9ef095d3320f6e03
source PubMed Central(OpenAccess); Nature; Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database
subjects 639/301/1023/303
639/766/400
Animals
Aquatic Organisms - chemistry
Aquatic Organisms - physiology
Biomechanical Phenomena
Color
Control surfaces
Cracks
Decapodiformes - chemistry
Decapodiformes - physiology
Deformation
Design
Encryption
Engineering
Fluorescein - chemistry
Fluorescence
Humanities and Social Sciences
Light
Luminescence
Marine organisms
Mechanoluminescence
multidisciplinary
Muscles
Optical Devices
Polyvinyl alcohol
Polyvinyl Alcohol - chemistry
Science
Science (multidisciplinary)
Sensitivity
Silanes - chemistry
Silicates - chemistry
Stress, Mechanical
Tactics
Thin films
Vinyl Compounds - chemistry
title Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20sensitive%20and%20reversible%20mechanochromisms%20via%20strain-dependent%20cracks%20and%20folds&rft.jtitle=Nature%20communications&rft.au=Zeng,%20Songshan&rft.date=2016-07-08&rft.volume=7&rft.issue=1&rft.spage=11802&rft.epage=11802&rft.pages=11802-11802&rft.artnum=11802&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms11802&rft_dat=%3Cproquest_doaj_%3E4111268291%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-b8a305b296bd7e6a26d09c814ac7d523e36f2ba68e567de9667c7fa030ca4b7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1802475572&rft_id=info:pmid/27389480&rfr_iscdi=true