Loading…

Performance Analysis of Precipitation Datasets at Multiple Spatio-Temporal Scales over Dense Gauge Network in Mountainous Domain of Tajikistan, Central Asia

Cryospheric and ecological studies become very complicated due to the absence of observed data, particularly in the mountainous regions of Central Asia. Performance analysis of Satellite-Based Precipitation Datasets (SBPD) is very critical before their direct hydro-climatic applications. This study...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-03, Vol.15 (5), p.1420
Main Authors: Gulakhmadov, Manuchekhr, Chen, Xi, Gulakhmadov, Aminjon, Nadeem, Muhammad Umer, Gulahmadov, Nekruz, Liu, Tie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cryospheric and ecological studies become very complicated due to the absence of observed data, particularly in the mountainous regions of Central Asia. Performance analysis of Satellite-Based Precipitation Datasets (SBPD) is very critical before their direct hydro-climatic applications. This study assessed the ground validation of four SBPDs (IMERG, TRMM, PERSIANN-CDR, and PERSIANN-CSS). From January 2000 to December 2013, all SBPD data were analyzed on daily, monthly, seasonal (winter, spring, summer, autumn), and annual scales at the entire spatial domain and point-to-pixel scale. The performance of SBPD was analyzed by using evaluation indices (root mean square error (RMSE), correlation coefficient (CC), bias, and relative bias (r-Bias)) along with categorical indices (false alarm ratio (FAR), probability of detection (POD), success ratio (SR), and critical success index (CSI). Results revealed that: (1) IMERG’s spatiotemporal tracking ability is better as compared to other datasets with appropriate ranges (CC > 0.8 and r-BIAS (±10)). The performance of all SBPDs is more capable on a monthly scale as compared to a daily scale. (2) In terms of POD, the IMERG outperformed all other SBPD on daily and seasonal scales. All SBPD showed underestimations in the summer season, and PERSIANN-CCS showed the most significant underestimation (−70). Moreover, the IMERG signposted the most satisfactory performance in all seasons. (3) All SBPD showed better performance in capturing the light precipitation events as indicated by the Probability Density Function (PDF%). Moreover, the performance of PERSIANN-CDR and TRMM is acceptable at low topography; the performance of PERSIANN-CCS is very poor in diverse topographical and climatic conditions over Tajikistan. Therefore, we advocate the use of daily, monthly, and seasonal estimations of IMERG precipitation product for hydro-climatic applications over the mountainous domain of Central Asia.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15051420