Loading…

The C-Terminal Domain of Staphylococcus aureus Zinc Transport Protein AdcA Binds Plasminogen and Factor H In Vitro

Bacterial acquisition of metals from a host is an essential attribute to facilitate survival and colonization within an infected organism. , a bacterial pathogen of medical importance, has evolved its strategies to acquire multiple metals, including iron, manganese, and zinc. Other important strateg...

Full description

Saved in:
Bibliographic Details
Published in:Pathogens (Basel) 2022-02, Vol.11 (2), p.240
Main Authors: Salazar, Natália, Yamamoto, Bruno Bernardi, Souza, Matilde Costa Lima de, Silva, Ludmila Bezerra da, Arêas, Ana Paula Mattos, Barbosa, Angela Silva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacterial acquisition of metals from a host is an essential attribute to facilitate survival and colonization within an infected organism. , a bacterial pathogen of medical importance, has evolved its strategies to acquire multiple metals, including iron, manganese, and zinc. Other important strategies for the colonization and infection of the host have been reported for staphylococci and include the expression of adhesins on the bacterial surface, as well as the acquisition of host plasminogen and complement regulatory proteins. Here we assess the ability of the zinc transport protein AdcA from , first characterized elsewhere as a zinc-binding protein of the ABC (ATP-binding cassette) transporters, to bind to host molecules. Like other staphylococcus ion-scavenging proteins, such as MntC, a manganese-binding protein, AdcA interacts with human plasminogen. Once activated, plasmin bound to AdcA cleaves fibrinogen and vitronectin. In addition, AdcA interacts with the human negative complement regulator factor H (FH). Plasminogen and FH have been shown to bind to distinct sites on the AdcA C-terminal portion. In conclusion, our in vitro data pave the way for future studies addressing the relevance of AdcA interactions with host molecules in vivo.
ISSN:2076-0817
2076-0817
DOI:10.3390/pathogens11020240