Loading…

Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs

The operation problem of a micro-grid (MG) in grid-connected mode is an optimization one in which the main objective of the MG operator (MGO) is to minimize the operation cost with optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use incentive-based demand r...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2018-03, Vol.11 (3), p.610
Main Authors: Sheikhahmadi, Pouria, Mafakheri, Ramyar, Bahramara, Salah, Damavandi, Maziar, Catalão, João
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The operation problem of a micro-grid (MG) in grid-connected mode is an optimization one in which the main objective of the MG operator (MGO) is to minimize the operation cost with optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use incentive-based demand response programs (DRPs) to pay an incentive to the consumers to change their demands in the peak hours. Moreover, the MGO forecasts the output power of renewable energy resources (RERs) and models their uncertainties in its problem. In this paper, the operation problem of an MGO is modeled as a risk-based two-stage stochastic optimization problem. To model the uncertainties of RERs, two-stage stochastic programming is considered and conditional value at risk (CVaR) index is used to manage the MGO’s risk-level. Moreover, the non-linear economic models of incentive-based DRPs are used by the MGO to change the peak load. The numerical studies are done to investigate the effect of incentive-based DRPs on the operation problem of the MGO. Moreover, to show the effect of the risk-averse parameter on MGO decisions, a sensitivity analysis is carried out.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11030610