Loading…
Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management
The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (...
Saved in:
Published in: | Journal of Anesthesia, Analgesia and Critical Care (Online) Analgesia and Critical Care (Online), 2023-06, Vol.3 (1), p.19-19, Article 19 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3 |
container_end_page | 19 |
container_issue | 1 |
container_start_page | 19 |
container_title | Journal of Anesthesia, Analgesia and Critical Care (Online) |
container_volume | 3 |
creator | Cascella, Marco Scarpati, Giuliana Bignami, Elena Giovanna Cuomo, Arturo Vittori, Alessandro Di Gennaro, Piergiacomo Crispo, Anna Coluccia, Sergio |
description | The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management.
We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits.
The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations.
As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches. |
doi_str_mv | 10.1186/s44158-023-00104-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_440b4806e6644fb2b549191fb7177e33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_440b4806e6644fb2b549191fb7177e33</doaj_id><sourcerecordid>2827825215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3</originalsourceid><addsrcrecordid>eNpdkk1vFSEUhidGY5vaP-DCkLhpF6N8zQArYxo_mjRxY9eEgTNTrjNwBe41-k_6b2V6a9O6gsBznnA4b9O8JvgdIbJ_nzknnWwxZS3GBPNWPmuOqWCkZUL2zx_tj5rTnDcYYyo7wRR52RwxwWTfS3zc3F4XP_s_PkzIBGRS8aO33szIhwLz7CcIFtCYzAK_YvqBzmwMzhcfQ2XqJSRT_B6QcXtI2aS1NEBZ2XNUIoJwY1ZDlcECrroDoFxqFUweMhpjQnYlEtoaH9BigpkqGcqr5sVo5gyn9-tJc_350_eLr-3Vty-XFx-vWsuVKK1lnFKmVIcZl9w6YhQVrlNUUSmUcFxKZznHTnQDZo5hwYHizqkRmMCjYSfN5cHrotnobfKLSb91NF7fHcQ06fVb7Ay6agYucQ99z_k40KHjiigyDoIIAYxV14eDa7sbare2tpHM_ET69Cb4Gz3FvSZ1OFhxUQ1n94YUf-4gF734bOskTIC4y5pKRjshiCQVffsfuom7VOeyUlRI2lHSVYoeKJtizgnGh9cQrNck6UOSdE2SvkuSlrXozeM-Hkr-5Yb9BZnsxgc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827825215</pqid></control><display><type>article</type><title>Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Cascella, Marco ; Scarpati, Giuliana ; Bignami, Elena Giovanna ; Cuomo, Arturo ; Vittori, Alessandro ; Di Gennaro, Piergiacomo ; Crispo, Anna ; Coluccia, Sergio</creator><creatorcontrib>Cascella, Marco ; Scarpati, Giuliana ; Bignami, Elena Giovanna ; Cuomo, Arturo ; Vittori, Alessandro ; Di Gennaro, Piergiacomo ; Crispo, Anna ; Coluccia, Sergio</creatorcontrib><description>The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management.
We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits.
The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations.
As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches.</description><identifier>ISSN: 2731-3786</identifier><identifier>EISSN: 2731-3786</identifier><identifier>DOI: 10.1186/s44158-023-00104-8</identifier><identifier>PMID: 37386680</identifier><language>eng</language><publisher>England: Springer Nature B.V</publisher><subject>Artificial intelligence ; Cancer ; Cancer pain ; Conditional generative adversarial network ; Data analysis ; Datasets ; Deep learning ; Machine learning ; Medical personnel ; Metastasis ; Narcotics ; Neural networks ; Original ; Pain management ; Patients ; Probability distribution ; Telemedicine ; Variables</subject><ispartof>Journal of Anesthesia, Analgesia and Critical Care (Online), 2023-06, Vol.3 (1), p.19-19, Article 19</ispartof><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3</citedby><cites>FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3</cites><orcidid>0000-0002-5236-3132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2827825215/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2827825215?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37386680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cascella, Marco</creatorcontrib><creatorcontrib>Scarpati, Giuliana</creatorcontrib><creatorcontrib>Bignami, Elena Giovanna</creatorcontrib><creatorcontrib>Cuomo, Arturo</creatorcontrib><creatorcontrib>Vittori, Alessandro</creatorcontrib><creatorcontrib>Di Gennaro, Piergiacomo</creatorcontrib><creatorcontrib>Crispo, Anna</creatorcontrib><creatorcontrib>Coluccia, Sergio</creatorcontrib><title>Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management</title><title>Journal of Anesthesia, Analgesia and Critical Care (Online)</title><addtitle>J Anesth Analg Crit Care</addtitle><description>The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management.
We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits.
The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations.
As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches.</description><subject>Artificial intelligence</subject><subject>Cancer</subject><subject>Cancer pain</subject><subject>Conditional generative adversarial network</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Medical personnel</subject><subject>Metastasis</subject><subject>Narcotics</subject><subject>Neural networks</subject><subject>Original</subject><subject>Pain management</subject><subject>Patients</subject><subject>Probability distribution</subject><subject>Telemedicine</subject><subject>Variables</subject><issn>2731-3786</issn><issn>2731-3786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vFSEUhidGY5vaP-DCkLhpF6N8zQArYxo_mjRxY9eEgTNTrjNwBe41-k_6b2V6a9O6gsBznnA4b9O8JvgdIbJ_nzknnWwxZS3GBPNWPmuOqWCkZUL2zx_tj5rTnDcYYyo7wRR52RwxwWTfS3zc3F4XP_s_PkzIBGRS8aO33szIhwLz7CcIFtCYzAK_YvqBzmwMzhcfQ2XqJSRT_B6QcXtI2aS1NEBZ2XNUIoJwY1ZDlcECrroDoFxqFUweMhpjQnYlEtoaH9BigpkqGcqr5sVo5gyn9-tJc_350_eLr-3Vty-XFx-vWsuVKK1lnFKmVIcZl9w6YhQVrlNUUSmUcFxKZznHTnQDZo5hwYHizqkRmMCjYSfN5cHrotnobfKLSb91NF7fHcQ06fVb7Ay6agYucQ99z_k40KHjiigyDoIIAYxV14eDa7sbare2tpHM_ET69Cb4Gz3FvSZ1OFhxUQ1n94YUf-4gF734bOskTIC4y5pKRjshiCQVffsfuom7VOeyUlRI2lHSVYoeKJtizgnGh9cQrNck6UOSdE2SvkuSlrXozeM-Hkr-5Yb9BZnsxgc</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Cascella, Marco</creator><creator>Scarpati, Giuliana</creator><creator>Bignami, Elena Giovanna</creator><creator>Cuomo, Arturo</creator><creator>Vittori, Alessandro</creator><creator>Di Gennaro, Piergiacomo</creator><creator>Crispo, Anna</creator><creator>Coluccia, Sergio</creator><general>Springer Nature B.V</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5236-3132</orcidid></search><sort><creationdate>20230620</creationdate><title>Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management</title><author>Cascella, Marco ; Scarpati, Giuliana ; Bignami, Elena Giovanna ; Cuomo, Arturo ; Vittori, Alessandro ; Di Gennaro, Piergiacomo ; Crispo, Anna ; Coluccia, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Cancer</topic><topic>Cancer pain</topic><topic>Conditional generative adversarial network</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Medical personnel</topic><topic>Metastasis</topic><topic>Narcotics</topic><topic>Neural networks</topic><topic>Original</topic><topic>Pain management</topic><topic>Patients</topic><topic>Probability distribution</topic><topic>Telemedicine</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cascella, Marco</creatorcontrib><creatorcontrib>Scarpati, Giuliana</creatorcontrib><creatorcontrib>Bignami, Elena Giovanna</creatorcontrib><creatorcontrib>Cuomo, Arturo</creatorcontrib><creatorcontrib>Vittori, Alessandro</creatorcontrib><creatorcontrib>Di Gennaro, Piergiacomo</creatorcontrib><creatorcontrib>Crispo, Anna</creatorcontrib><creatorcontrib>Coluccia, Sergio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Anesthesia, Analgesia and Critical Care (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cascella, Marco</au><au>Scarpati, Giuliana</au><au>Bignami, Elena Giovanna</au><au>Cuomo, Arturo</au><au>Vittori, Alessandro</au><au>Di Gennaro, Piergiacomo</au><au>Crispo, Anna</au><au>Coluccia, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management</atitle><jtitle>Journal of Anesthesia, Analgesia and Critical Care (Online)</jtitle><addtitle>J Anesth Analg Crit Care</addtitle><date>2023-06-20</date><risdate>2023</risdate><volume>3</volume><issue>1</issue><spage>19</spage><epage>19</epage><pages>19-19</pages><artnum>19</artnum><issn>2731-3786</issn><eissn>2731-3786</eissn><abstract>The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management.
We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits.
The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations.
As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches.</abstract><cop>England</cop><pub>Springer Nature B.V</pub><pmid>37386680</pmid><doi>10.1186/s44158-023-00104-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5236-3132</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-3786 |
ispartof | Journal of Anesthesia, Analgesia and Critical Care (Online), 2023-06, Vol.3 (1), p.19-19, Article 19 |
issn | 2731-3786 2731-3786 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_440b4806e6644fb2b549191fb7177e33 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Artificial intelligence Cancer Cancer pain Conditional generative adversarial network Data analysis Datasets Deep learning Machine learning Medical personnel Metastasis Narcotics Neural networks Original Pain management Patients Probability distribution Telemedicine Variables |
title | Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20an%20artificial%20intelligence%20framework%20(conditional%20generative%20adversarial%20network)%20to%20enhance%20telemedicine%20strategies%20for%20cancer%20pain%20management&rft.jtitle=Journal%20of%20Anesthesia,%20Analgesia%20and%20Critical%20Care%20(Online)&rft.au=Cascella,%20Marco&rft.date=2023-06-20&rft.volume=3&rft.issue=1&rft.spage=19&rft.epage=19&rft.pages=19-19&rft.artnum=19&rft.issn=2731-3786&rft.eissn=2731-3786&rft_id=info:doi/10.1186/s44158-023-00104-8&rft_dat=%3Cproquest_doaj_%3E2827825215%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827825215&rft_id=info:pmid/37386680&rfr_iscdi=true |