Loading…

Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management

The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Anesthesia, Analgesia and Critical Care (Online) Analgesia and Critical Care (Online), 2023-06, Vol.3 (1), p.19-19, Article 19
Main Authors: Cascella, Marco, Scarpati, Giuliana, Bignami, Elena Giovanna, Cuomo, Arturo, Vittori, Alessandro, Di Gennaro, Piergiacomo, Crispo, Anna, Coluccia, Sergio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3
cites cdi_FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3
container_end_page 19
container_issue 1
container_start_page 19
container_title Journal of Anesthesia, Analgesia and Critical Care (Online)
container_volume 3
creator Cascella, Marco
Scarpati, Giuliana
Bignami, Elena Giovanna
Cuomo, Arturo
Vittori, Alessandro
Di Gennaro, Piergiacomo
Crispo, Anna
Coluccia, Sergio
description The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management. We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits. The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations. As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches.
doi_str_mv 10.1186/s44158-023-00104-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_440b4806e6644fb2b549191fb7177e33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_440b4806e6644fb2b549191fb7177e33</doaj_id><sourcerecordid>2827825215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3</originalsourceid><addsrcrecordid>eNpdkk1vFSEUhidGY5vaP-DCkLhpF6N8zQArYxo_mjRxY9eEgTNTrjNwBe41-k_6b2V6a9O6gsBznnA4b9O8JvgdIbJ_nzknnWwxZS3GBPNWPmuOqWCkZUL2zx_tj5rTnDcYYyo7wRR52RwxwWTfS3zc3F4XP_s_PkzIBGRS8aO33szIhwLz7CcIFtCYzAK_YvqBzmwMzhcfQ2XqJSRT_B6QcXtI2aS1NEBZ2XNUIoJwY1ZDlcECrroDoFxqFUweMhpjQnYlEtoaH9BigpkqGcqr5sVo5gyn9-tJc_350_eLr-3Vty-XFx-vWsuVKK1lnFKmVIcZl9w6YhQVrlNUUSmUcFxKZznHTnQDZo5hwYHizqkRmMCjYSfN5cHrotnobfKLSb91NF7fHcQ06fVb7Ay6agYucQ99z_k40KHjiigyDoIIAYxV14eDa7sbare2tpHM_ET69Cb4Gz3FvSZ1OFhxUQ1n94YUf-4gF734bOskTIC4y5pKRjshiCQVffsfuom7VOeyUlRI2lHSVYoeKJtizgnGh9cQrNck6UOSdE2SvkuSlrXozeM-Hkr-5Yb9BZnsxgc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827825215</pqid></control><display><type>article</type><title>Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Cascella, Marco ; Scarpati, Giuliana ; Bignami, Elena Giovanna ; Cuomo, Arturo ; Vittori, Alessandro ; Di Gennaro, Piergiacomo ; Crispo, Anna ; Coluccia, Sergio</creator><creatorcontrib>Cascella, Marco ; Scarpati, Giuliana ; Bignami, Elena Giovanna ; Cuomo, Arturo ; Vittori, Alessandro ; Di Gennaro, Piergiacomo ; Crispo, Anna ; Coluccia, Sergio</creatorcontrib><description>The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management. We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits. The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations. As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches.</description><identifier>ISSN: 2731-3786</identifier><identifier>EISSN: 2731-3786</identifier><identifier>DOI: 10.1186/s44158-023-00104-8</identifier><identifier>PMID: 37386680</identifier><language>eng</language><publisher>England: Springer Nature B.V</publisher><subject>Artificial intelligence ; Cancer ; Cancer pain ; Conditional generative adversarial network ; Data analysis ; Datasets ; Deep learning ; Machine learning ; Medical personnel ; Metastasis ; Narcotics ; Neural networks ; Original ; Pain management ; Patients ; Probability distribution ; Telemedicine ; Variables</subject><ispartof>Journal of Anesthesia, Analgesia and Critical Care (Online), 2023-06, Vol.3 (1), p.19-19, Article 19</ispartof><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3</citedby><cites>FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3</cites><orcidid>0000-0002-5236-3132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2827825215/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2827825215?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37386680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cascella, Marco</creatorcontrib><creatorcontrib>Scarpati, Giuliana</creatorcontrib><creatorcontrib>Bignami, Elena Giovanna</creatorcontrib><creatorcontrib>Cuomo, Arturo</creatorcontrib><creatorcontrib>Vittori, Alessandro</creatorcontrib><creatorcontrib>Di Gennaro, Piergiacomo</creatorcontrib><creatorcontrib>Crispo, Anna</creatorcontrib><creatorcontrib>Coluccia, Sergio</creatorcontrib><title>Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management</title><title>Journal of Anesthesia, Analgesia and Critical Care (Online)</title><addtitle>J Anesth Analg Crit Care</addtitle><description>The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management. We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits. The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations. As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches.</description><subject>Artificial intelligence</subject><subject>Cancer</subject><subject>Cancer pain</subject><subject>Conditional generative adversarial network</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Medical personnel</subject><subject>Metastasis</subject><subject>Narcotics</subject><subject>Neural networks</subject><subject>Original</subject><subject>Pain management</subject><subject>Patients</subject><subject>Probability distribution</subject><subject>Telemedicine</subject><subject>Variables</subject><issn>2731-3786</issn><issn>2731-3786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vFSEUhidGY5vaP-DCkLhpF6N8zQArYxo_mjRxY9eEgTNTrjNwBe41-k_6b2V6a9O6gsBznnA4b9O8JvgdIbJ_nzknnWwxZS3GBPNWPmuOqWCkZUL2zx_tj5rTnDcYYyo7wRR52RwxwWTfS3zc3F4XP_s_PkzIBGRS8aO33szIhwLz7CcIFtCYzAK_YvqBzmwMzhcfQ2XqJSRT_B6QcXtI2aS1NEBZ2XNUIoJwY1ZDlcECrroDoFxqFUweMhpjQnYlEtoaH9BigpkqGcqr5sVo5gyn9-tJc_350_eLr-3Vty-XFx-vWsuVKK1lnFKmVIcZl9w6YhQVrlNUUSmUcFxKZznHTnQDZo5hwYHizqkRmMCjYSfN5cHrotnobfKLSb91NF7fHcQ06fVb7Ay6agYucQ99z_k40KHjiigyDoIIAYxV14eDa7sbare2tpHM_ET69Cb4Gz3FvSZ1OFhxUQ1n94YUf-4gF734bOskTIC4y5pKRjshiCQVffsfuom7VOeyUlRI2lHSVYoeKJtizgnGh9cQrNck6UOSdE2SvkuSlrXozeM-Hkr-5Yb9BZnsxgc</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Cascella, Marco</creator><creator>Scarpati, Giuliana</creator><creator>Bignami, Elena Giovanna</creator><creator>Cuomo, Arturo</creator><creator>Vittori, Alessandro</creator><creator>Di Gennaro, Piergiacomo</creator><creator>Crispo, Anna</creator><creator>Coluccia, Sergio</creator><general>Springer Nature B.V</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5236-3132</orcidid></search><sort><creationdate>20230620</creationdate><title>Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management</title><author>Cascella, Marco ; Scarpati, Giuliana ; Bignami, Elena Giovanna ; Cuomo, Arturo ; Vittori, Alessandro ; Di Gennaro, Piergiacomo ; Crispo, Anna ; Coluccia, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Cancer</topic><topic>Cancer pain</topic><topic>Conditional generative adversarial network</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Medical personnel</topic><topic>Metastasis</topic><topic>Narcotics</topic><topic>Neural networks</topic><topic>Original</topic><topic>Pain management</topic><topic>Patients</topic><topic>Probability distribution</topic><topic>Telemedicine</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cascella, Marco</creatorcontrib><creatorcontrib>Scarpati, Giuliana</creatorcontrib><creatorcontrib>Bignami, Elena Giovanna</creatorcontrib><creatorcontrib>Cuomo, Arturo</creatorcontrib><creatorcontrib>Vittori, Alessandro</creatorcontrib><creatorcontrib>Di Gennaro, Piergiacomo</creatorcontrib><creatorcontrib>Crispo, Anna</creatorcontrib><creatorcontrib>Coluccia, Sergio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Anesthesia, Analgesia and Critical Care (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cascella, Marco</au><au>Scarpati, Giuliana</au><au>Bignami, Elena Giovanna</au><au>Cuomo, Arturo</au><au>Vittori, Alessandro</au><au>Di Gennaro, Piergiacomo</au><au>Crispo, Anna</au><au>Coluccia, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management</atitle><jtitle>Journal of Anesthesia, Analgesia and Critical Care (Online)</jtitle><addtitle>J Anesth Analg Crit Care</addtitle><date>2023-06-20</date><risdate>2023</risdate><volume>3</volume><issue>1</issue><spage>19</spage><epage>19</epage><pages>19-19</pages><artnum>19</artnum><issn>2731-3786</issn><eissn>2731-3786</eissn><abstract>The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management. We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits. The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations. As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches.</abstract><cop>England</cop><pub>Springer Nature B.V</pub><pmid>37386680</pmid><doi>10.1186/s44158-023-00104-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5236-3132</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2731-3786
ispartof Journal of Anesthesia, Analgesia and Critical Care (Online), 2023-06, Vol.3 (1), p.19-19, Article 19
issn 2731-3786
2731-3786
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_440b4806e6644fb2b549191fb7177e33
source Publicly Available Content (ProQuest); PubMed Central
subjects Artificial intelligence
Cancer
Cancer pain
Conditional generative adversarial network
Data analysis
Datasets
Deep learning
Machine learning
Medical personnel
Metastasis
Narcotics
Neural networks
Original
Pain management
Patients
Probability distribution
Telemedicine
Variables
title Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20an%20artificial%20intelligence%20framework%20(conditional%20generative%20adversarial%20network)%20to%20enhance%20telemedicine%20strategies%20for%20cancer%20pain%20management&rft.jtitle=Journal%20of%20Anesthesia,%20Analgesia%20and%20Critical%20Care%20(Online)&rft.au=Cascella,%20Marco&rft.date=2023-06-20&rft.volume=3&rft.issue=1&rft.spage=19&rft.epage=19&rft.pages=19-19&rft.artnum=19&rft.issn=2731-3786&rft.eissn=2731-3786&rft_id=info:doi/10.1186/s44158-023-00104-8&rft_dat=%3Cproquest_doaj_%3E2827825215%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-c3422399503484cd1a927d592928797d488dc440d75b03d3074e205d9fe370fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827825215&rft_id=info:pmid/37386680&rfr_iscdi=true