Loading…

Highly Sensitive Fluorescence Detection of Three Organophosphorus Pesticides Based on Highly Bright DNA-Templated Silver Nanoclusters

It is still challenging to achieve simultaneous and sensitive detection of multiple organophosphorus pesticides (OPs). Herein, we optimized the ssDNA templates for the synthesis of silver nanoclusters (Ag NCs). For the first time, we found that the fluorescence intensity of T base-extended DNA-templ...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors (Basel) 2023-05, Vol.13 (5), p.520
Main Authors: Li, Guowen, Huang, Xiufang, Peng, Chifang, Sun, Fengxia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is still challenging to achieve simultaneous and sensitive detection of multiple organophosphorus pesticides (OPs). Herein, we optimized the ssDNA templates for the synthesis of silver nanoclusters (Ag NCs). For the first time, we found that the fluorescence intensity of T base-extended DNA-templated Ag NCs was over three times higher than the original C-riched DNA-templated Ag NCs. Moreover, a "turn-off" fluorescence sensor based on the brightest DNA-Ag NCs was constructed for the sensitive detection of dimethoate, ethion and phorate. Under strong alkaline conditions, the P-S bonds in three pesticides were broken, and the corresponding hydrolysates were obtained. The sulfhydryl groups in the hydrolyzed products formed Ag-S bonds with the silver atoms on the surface of Ag NCs, which resulted in the aggregation of Ag NCs, following the fluorescence quenching. The fluorescence sensor showed that the linear ranges were 0.1-4 ng/mL for dimethoate with a limit of detection (LOD) of 0.05 ng/mL, 0.3-2 µg/mL for ethion with a LOD of 30 ng/mL, and 0.03-0.25 µg/mL for phorate with a LOD of 3 ng/mL. Moreover, the developed method was successfully applied to the detection of dimethoate, ethion and phorate in lake water samples, indicating a potential application in OP detection.
ISSN:2079-6374
2079-6374
DOI:10.3390/bios13050520