Loading…

Urinary metabolomic signature of esophageal cancer and Barrett's esophagus

Esophageal adenocarcinoma (EAC) often presents at a late, incurable stage, and mortality has increased substantially, due to an increase in incidence of EAC arising out of Barrett's esophagus. When diagnosed early, however, the combination of surgery and adjuvant therapies is associated with hi...

Full description

Saved in:
Bibliographic Details
Published in:World journal of surgical oncology 2012-12, Vol.10 (1), p.271-271, Article 271
Main Authors: Davis, Vanessa W, Schiller, Daniel E, Eurich, Dean, Sawyer, Michael B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Esophageal adenocarcinoma (EAC) often presents at a late, incurable stage, and mortality has increased substantially, due to an increase in incidence of EAC arising out of Barrett's esophagus. When diagnosed early, however, the combination of surgery and adjuvant therapies is associated with high cure rates. Metabolomics provides a means for non- invasive screening of early tumor-associated perturbations in cellular metabolism. Urine samples from patients with esophageal carcinoma (n = 44), Barrett's esophagus (n = 31), and healthy controls (n = 75) were examined using (1)H-NMR spectroscopy. Targeted profiling of spectra using Chenomx software permitted quantification of 66 distinct metabolites. Unsupervised (principal component analysis) and supervised (orthogonal partial least-squares discriminant analysis OPLS-DA) multivariate pattern recognition techniques were applied to discriminate between samples using SIMCA-P(+) software. Model specificity was also confirmed through comparison with a pancreatic cancer cohort (n = 32). Clear distinctions between esophageal cancer, Barrett's esophagus and healthy controls were noted when OPLS-DA was applied. Model validity was confirmed using two established methods of internal validation, cross-validation and response permutation. Sensitivity and specificity of the multivariate OPLS-DA models were summarized using a receiver operating characteristic curve analysis and revealed excellent predictive power (area under the curve = 0.9810 and 0.9627 for esophageal cancer and Barrett's esophagus, respectively). The metabolite expression profiles of esophageal cancer and pancreatic cancer were also clearly distinguishable with an area under the receiver operating characteristics curve (AUROC) = 0.8954. Urinary metabolomics identified discrete metabolic signatures that clearly distinguished both Barrett's esophagus and esophageal cancer from controls. The metabolite expression profile of esophageal cancer was also discrete from its precursor lesion, Barrett's esophagus. The cancer-specific nature of this profile was confirmed through comparison with pancreatic cancer. These preliminary results suggest that urinary metabolomics may have a future potential role in non-invasive screening in these conditions.
ISSN:1477-7819
1477-7819
DOI:10.1186/1477-7819-10-271