Loading…

Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation

Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetall...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2024-08, Vol.29 (16), p.3734
Main Authors: Zhu, Yizhen, Chen, Xiangyu, Zhang, Yuanyao, Zhu, Zhifei, Chen, Handan, Chai, Kejie, Xu, Weiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29163734