Loading…

Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling

Supercoupling effect is an exotic and counterintuitive physical phenomenon of epsilon-near-zero (ENZ) media, in which the light can be “squeezed” and tunneled through flexible channels substantially narrower than its wavelength. Theoretically, ENZ channels with infinitely small widths perform ideal...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-10, Vol.14 (1), p.6154-6154, Article 6154
Main Authors: Yan, Wendi, Zhou, Ziheng, Li, Hao, Li, Yue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-47c9608e3589a30f8016a69b262208dcd38b07295abdb5df795104a09189f33f3
cites cdi_FETCH-LOGICAL-c518t-47c9608e3589a30f8016a69b262208dcd38b07295abdb5df795104a09189f33f3
container_end_page 6154
container_issue 1
container_start_page 6154
container_title Nature communications
container_volume 14
creator Yan, Wendi
Zhou, Ziheng
Li, Hao
Li, Yue
description Supercoupling effect is an exotic and counterintuitive physical phenomenon of epsilon-near-zero (ENZ) media, in which the light can be “squeezed” and tunneled through flexible channels substantially narrower than its wavelength. Theoretically, ENZ channels with infinitely small widths perform ideal supercoupling with full energy transmission and zero-phase advance. As a feasible solution to demonstrate ENZ supercoupling through a finite-width channel, photonic doping can assist the light in squeezing, but the resonant dopant introduces inevitable losses. Here, we propose an approach of transmission-type photonic doping to achieve proximate ideal ENZ supercoupling. In contrast to the conventional resonance-type photonic doping, our proposed transmission-type doping replaces high-quality-factor two-dimensional resonant doping modes with low-quality-factor one-dimensional modes, such that obviously high transmission efficiency and zero-phase advance in ENZ supercoupling is achieved and observed in experiments. Benefiting from the high-efficiency ENZ supercoupling, waveguides with near-total energy transmission can be engineered with arbitrary dimensions and shapes, serving as flexible power conduits in the paradigm of waveguide integrated circuits for future millimeter-wave and terahertz integrated circuit innovations. The authors present a transmission-type doping approach to reduce resonant losses in photonic doping. Assisted by the approach, proximate ideal epsilon-near-zero (ENZ) supercoupling with neartotal energy transmission and zero-phase advance is achieved in experiments.
doi_str_mv 10.1038/s41467-023-41965-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_444bf7cfba0e4f15b0f7ee2cf2bb23d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_444bf7cfba0e4f15b0f7ee2cf2bb23d8</doaj_id><sourcerecordid>2872806000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-47c9608e3589a30f8016a69b262208dcd38b07295abdb5df795104a09189f33f3</originalsourceid><addsrcrecordid>eNp9kkuPFCEUhYnROJN2_oCrSty4QXkWsDJm4mOSSdzMrAlQUE2nGkqoMml_vfTURB0XsoFwz_nCvRwAXmP0DiMq31eGWS8gIhQyrHoO-TNwSRDDEAtCn_91vgBXtR5QW1RhydhLcEGFkAphegnu74pJ9RhrjTnB5TT7bt7nJafouiHPMY1dyKXbx3EPfQjRRZ_cqfNzjVMzJG8K_OlL7uo6--LyOk_N8wq8CGaq_upx34H7z5_urr_C229fbq4_3kLHsVwgE071SHrKpTIUBYlwb3plSU8IkoMbqLRIEMWNHSwfglAcI2ZQa0MFSgPdgZuNO2Rz0HOJR1NOOpuoHy5yGbUpS3ST14wxG4QL1iDPAuYWBeE9cYFYS-ggG-vDxppXe_SD82kpZnoCfVpJca_H_ENjxJnoZd8Ibx8JJX9ffV10m6vz02SSz2vVRAoiUX_-iB1484_0kNeS2qzOKqwE5YI3FdlUruRaiw-_X4ORPqdAbynQLQX6IQX6bKKbqTZxGn35g_6P6xe5W7R3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871973575</pqid></control><display><type>article</type><title>Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yan, Wendi ; Zhou, Ziheng ; Li, Hao ; Li, Yue</creator><creatorcontrib>Yan, Wendi ; Zhou, Ziheng ; Li, Hao ; Li, Yue</creatorcontrib><description>Supercoupling effect is an exotic and counterintuitive physical phenomenon of epsilon-near-zero (ENZ) media, in which the light can be “squeezed” and tunneled through flexible channels substantially narrower than its wavelength. Theoretically, ENZ channels with infinitely small widths perform ideal supercoupling with full energy transmission and zero-phase advance. As a feasible solution to demonstrate ENZ supercoupling through a finite-width channel, photonic doping can assist the light in squeezing, but the resonant dopant introduces inevitable losses. Here, we propose an approach of transmission-type photonic doping to achieve proximate ideal ENZ supercoupling. In contrast to the conventional resonance-type photonic doping, our proposed transmission-type doping replaces high-quality-factor two-dimensional resonant doping modes with low-quality-factor one-dimensional modes, such that obviously high transmission efficiency and zero-phase advance in ENZ supercoupling is achieved and observed in experiments. Benefiting from the high-efficiency ENZ supercoupling, waveguides with near-total energy transmission can be engineered with arbitrary dimensions and shapes, serving as flexible power conduits in the paradigm of waveguide integrated circuits for future millimeter-wave and terahertz integrated circuit innovations. The authors present a transmission-type doping approach to reduce resonant losses in photonic doping. Assisted by the approach, proximate ideal epsilon-near-zero (ENZ) supercoupling with neartotal energy transmission and zero-phase advance is achieved in experiments.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41965-5</identifier><identifier>PMID: 37789013</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/624/399/1015 ; 639/766/1130/2799 ; Channels ; Doping ; Efficiency ; Energy transmission ; Humanities and Social Sciences ; Integrated circuits ; Millimeter waves ; multidisciplinary ; Photonics ; Science ; Science (multidisciplinary) ; Transmission efficiency ; Waveguides</subject><ispartof>Nature communications, 2023-10, Vol.14 (1), p.6154-6154, Article 6154</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-47c9608e3589a30f8016a69b262208dcd38b07295abdb5df795104a09189f33f3</citedby><cites>FETCH-LOGICAL-c518t-47c9608e3589a30f8016a69b262208dcd38b07295abdb5df795104a09189f33f3</cites><orcidid>0000-0001-9562-3136 ; 0000-0003-1153-3622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2871973575/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2871973575?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yan, Wendi</creatorcontrib><creatorcontrib>Zhou, Ziheng</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><title>Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Supercoupling effect is an exotic and counterintuitive physical phenomenon of epsilon-near-zero (ENZ) media, in which the light can be “squeezed” and tunneled through flexible channels substantially narrower than its wavelength. Theoretically, ENZ channels with infinitely small widths perform ideal supercoupling with full energy transmission and zero-phase advance. As a feasible solution to demonstrate ENZ supercoupling through a finite-width channel, photonic doping can assist the light in squeezing, but the resonant dopant introduces inevitable losses. Here, we propose an approach of transmission-type photonic doping to achieve proximate ideal ENZ supercoupling. In contrast to the conventional resonance-type photonic doping, our proposed transmission-type doping replaces high-quality-factor two-dimensional resonant doping modes with low-quality-factor one-dimensional modes, such that obviously high transmission efficiency and zero-phase advance in ENZ supercoupling is achieved and observed in experiments. Benefiting from the high-efficiency ENZ supercoupling, waveguides with near-total energy transmission can be engineered with arbitrary dimensions and shapes, serving as flexible power conduits in the paradigm of waveguide integrated circuits for future millimeter-wave and terahertz integrated circuit innovations. The authors present a transmission-type doping approach to reduce resonant losses in photonic doping. Assisted by the approach, proximate ideal epsilon-near-zero (ENZ) supercoupling with neartotal energy transmission and zero-phase advance is achieved in experiments.</description><subject>639/166/987</subject><subject>639/624/399/1015</subject><subject>639/766/1130/2799</subject><subject>Channels</subject><subject>Doping</subject><subject>Efficiency</subject><subject>Energy transmission</subject><subject>Humanities and Social Sciences</subject><subject>Integrated circuits</subject><subject>Millimeter waves</subject><subject>multidisciplinary</subject><subject>Photonics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transmission efficiency</subject><subject>Waveguides</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkuPFCEUhYnROJN2_oCrSty4QXkWsDJm4mOSSdzMrAlQUE2nGkqoMml_vfTURB0XsoFwz_nCvRwAXmP0DiMq31eGWS8gIhQyrHoO-TNwSRDDEAtCn_91vgBXtR5QW1RhydhLcEGFkAphegnu74pJ9RhrjTnB5TT7bt7nJafouiHPMY1dyKXbx3EPfQjRRZ_cqfNzjVMzJG8K_OlL7uo6--LyOk_N8wq8CGaq_upx34H7z5_urr_C229fbq4_3kLHsVwgE071SHrKpTIUBYlwb3plSU8IkoMbqLRIEMWNHSwfglAcI2ZQa0MFSgPdgZuNO2Rz0HOJR1NOOpuoHy5yGbUpS3ST14wxG4QL1iDPAuYWBeE9cYFYS-ggG-vDxppXe_SD82kpZnoCfVpJca_H_ENjxJnoZd8Ibx8JJX9ffV10m6vz02SSz2vVRAoiUX_-iB1484_0kNeS2qzOKqwE5YI3FdlUruRaiw-_X4ORPqdAbynQLQX6IQX6bKKbqTZxGn35g_6P6xe5W7R3</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Yan, Wendi</creator><creator>Zhou, Ziheng</creator><creator>Li, Hao</creator><creator>Li, Yue</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9562-3136</orcidid><orcidid>https://orcid.org/0000-0003-1153-3622</orcidid></search><sort><creationdate>20231003</creationdate><title>Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling</title><author>Yan, Wendi ; Zhou, Ziheng ; Li, Hao ; Li, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-47c9608e3589a30f8016a69b262208dcd38b07295abdb5df795104a09189f33f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/987</topic><topic>639/624/399/1015</topic><topic>639/766/1130/2799</topic><topic>Channels</topic><topic>Doping</topic><topic>Efficiency</topic><topic>Energy transmission</topic><topic>Humanities and Social Sciences</topic><topic>Integrated circuits</topic><topic>Millimeter waves</topic><topic>multidisciplinary</topic><topic>Photonics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transmission efficiency</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wendi</creatorcontrib><creatorcontrib>Zhou, Ziheng</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wendi</au><au>Zhou, Ziheng</au><au>Li, Hao</au><au>Li, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-10-03</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>6154</spage><epage>6154</epage><pages>6154-6154</pages><artnum>6154</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Supercoupling effect is an exotic and counterintuitive physical phenomenon of epsilon-near-zero (ENZ) media, in which the light can be “squeezed” and tunneled through flexible channels substantially narrower than its wavelength. Theoretically, ENZ channels with infinitely small widths perform ideal supercoupling with full energy transmission and zero-phase advance. As a feasible solution to demonstrate ENZ supercoupling through a finite-width channel, photonic doping can assist the light in squeezing, but the resonant dopant introduces inevitable losses. Here, we propose an approach of transmission-type photonic doping to achieve proximate ideal ENZ supercoupling. In contrast to the conventional resonance-type photonic doping, our proposed transmission-type doping replaces high-quality-factor two-dimensional resonant doping modes with low-quality-factor one-dimensional modes, such that obviously high transmission efficiency and zero-phase advance in ENZ supercoupling is achieved and observed in experiments. Benefiting from the high-efficiency ENZ supercoupling, waveguides with near-total energy transmission can be engineered with arbitrary dimensions and shapes, serving as flexible power conduits in the paradigm of waveguide integrated circuits for future millimeter-wave and terahertz integrated circuit innovations. The authors present a transmission-type doping approach to reduce resonant losses in photonic doping. Assisted by the approach, proximate ideal epsilon-near-zero (ENZ) supercoupling with neartotal energy transmission and zero-phase advance is achieved in experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37789013</pmid><doi>10.1038/s41467-023-41965-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9562-3136</orcidid><orcidid>https://orcid.org/0000-0003-1153-3622</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-10, Vol.14 (1), p.6154-6154, Article 6154
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_444bf7cfba0e4f15b0f7ee2cf2bb23d8
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/987
639/624/399/1015
639/766/1130/2799
Channels
Doping
Efficiency
Energy transmission
Humanities and Social Sciences
Integrated circuits
Millimeter waves
multidisciplinary
Photonics
Science
Science (multidisciplinary)
Transmission efficiency
Waveguides
title Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmission-type%20photonic%20doping%20for%20high-efficiency%20epsilon-near-zero%20supercoupling&rft.jtitle=Nature%20communications&rft.au=Yan,%20Wendi&rft.date=2023-10-03&rft.volume=14&rft.issue=1&rft.spage=6154&rft.epage=6154&rft.pages=6154-6154&rft.artnum=6154&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41965-5&rft_dat=%3Cproquest_doaj_%3E2872806000%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-47c9608e3589a30f8016a69b262208dcd38b07295abdb5df795104a09189f33f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2871973575&rft_id=info:pmid/37789013&rfr_iscdi=true