Loading…
Increased Usage of Antiseptics Is Associated with Reduced Susceptibility in Clinical Isolates of italic toggle="yes">Staphylococcus aureus /italic
ABSTRACT Hospital-acquired infection is a major cause of morbidity and mortality, and regimes to prevent infection are crucial in infection control. These include the decolonization of vulnerable patients with methicillin-resistant Staphylococcus aureus (MRSA) carriage using antiseptics, including c...
Saved in:
Published in: | mBio 2018-07, Vol.9 (3) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT Hospital-acquired infection is a major cause of morbidity and mortality, and regimes to prevent infection are crucial in infection control. These include the decolonization of vulnerable patients with methicillin-resistant Staphylococcus aureus (MRSA) carriage using antiseptics, including chlorhexidine and octenidine. Concern has been raised, however, regarding the possible development of biocide resistance. In this study, we assembled a panel of S. aureus isolates, including isolates collected before the development of chlorhexidine and octenidine and isolates, from a major hospital trust in the United Kingdom during a period when the decolonization regimes were altered. We observed significant increases in the MIC and minimum bactericidal concentration (MBC) of chlorhexidine in isolates from periods of high usage of chlorhexidine. Isolates with increased MICs and MBCs of octenidine rapidly emerged after octenidine was introduced in the trust. There was no apparent cross-resistance between the two biocidal agents. A combination of variable-number tandem repeat (VNTR) analysis, PCR for qac genes, and whole-genome sequencing was used to type isolates and examine possible mechanisms of resistance. There was no expansion of a single strain associated with decreased biocide tolerance, and biocide susceptibility did not correlate with carriage of qac efflux pump genes. Mutations within the NorA or NorB efflux pumps, previously associated with chlorhexidine export, were identified, however, suggesting that this may be an important mechanism of biocide tolerance. We present evidence that isolates are evolving in the face of biocide challenge in patients and that changes in decolonization regimes are reflected in changes in susceptibility of isolates. IMPORTANCE Infection in hospitals remains a major cause of death and disease. One way in which we combat this is by decolonizing at-risk patients from carriage of bacteria which can cause disease such as MRSA. This is done with antiseptics, including chlorhexidine and octenidine. There is concern, however, that bacteria may be able to become resistant to these antiseptics. In this study, we looked at isolates of MRSA and found that there was a correlation between the use of antiseptics and increased resistance in the isolates. We also suggest that the mechanism by which these more tolerant isolates may become resistant to antiseptics is that of changing a transport pump that exports these agents. This inform |
---|---|
ISSN: | 2150-7511 |
DOI: | 10.1128/mBio.00894-18 |