Loading…
DRACP: a novel method for identification of anticancer peptides
Millions of people are suffering from cancers, but accurate early diagnosis and effective treatment are still tough for all doctors. Common ways against cancer include surgical operation, radiotherapy and chemotherapy. However, they are all very harmful for patients. Recently, the anticancer peptide...
Saved in:
Published in: | BMC bioinformatics 2020-12, Vol.21 (Suppl 16), p.559-559, Article 559 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Millions of people are suffering from cancers, but accurate early diagnosis and effective treatment are still tough for all doctors. Common ways against cancer include surgical operation, radiotherapy and chemotherapy. However, they are all very harmful for patients. Recently, the anticancer peptides (ACPs) have been discovered to be a potential way to treat cancer. Since ACPs are natural biologics, they are safer than other methods. However, the experimental technology is an expensive way to find ACPs so we purpose a new machine learning method to identify the ACPs.
Firstly, we extracted the feature of ACPs in two aspects: sequence and chemical characteristics of amino acids. For sequence, average 20 amino acids composition was extracted. For chemical characteristics, we classified amino acids into six groups based on the patterns of hydrophobic and hydrophilic residues. Then, deep belief network has been used to encode the features of ACPs. Finally, we purposed Random Relevance Vector Machines to identify the true ACPs. We call this method 'DRACP' and tested the performance of it on two independent datasets. Its AUC and AUPR are higher than 0.9 in both datasets.
We developed a novel method named 'DRACP' and compared it with some traditional methods. The cross-validation results showed its effectiveness in identifying ACPs. |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-020-03812-y |