Loading…

Utilizing Cross-Ratios for the Detection and Correction of Missing Digits in Instrument Digit Recognition

This paper aims to enhance the existing Automatic Meter Reading (AMR) technologies for utilities in the public services sector, such as water, electricity, and gas, by allowing users to regularly upload images of their meters, which are then automatically processed by machines for digit recognition....

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2024-06, Vol.12 (11), p.1669
Main Authors: Huang, Jui-Hua, Chen, Yong-Han, Tsai, Yen-Lung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper aims to enhance the existing Automatic Meter Reading (AMR) technologies for utilities in the public services sector, such as water, electricity, and gas, by allowing users to regularly upload images of their meters, which are then automatically processed by machines for digit recognition. We propose an end-to-end AMR approach designed explicitly for unconstrained environments, offering practical solutions to common failures encountered during the automatic recognition process, such as image blur, perspective distortion, partial reflection, poor lighting, missing digits, and intermediate digit states, to reduce the failure rate of automatic meter readings. The system’s first stage involves checking the quality of the user-uploaded images through the SVM method and requesting re-uploads for images unsuitable for digit extraction and recognition. The second stage employs deep learning models for digit localization and recognition, automatically detecting and correcting issues such as missing and intermediate digits to enhance the accuracy of automatic meter readings. Our research established a gas meter training dataset comprising 52,000 images, extensively annotated across various degrees, to train the deep learning models for high-precision digit recognition. Experimental results demonstrate that, with the simple SVM model, an accuracy of 87.03% is achieved for the classification of blurry image types. In addition, meter digit recognition (including intermediate digit states) can reach 97.6% (mAP), and the detection and correction of missing digits can be as high as 63.64%, showcasing the practical application value of the system developed in this study.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12111669