Loading…
ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine
Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are c...
Saved in:
Published in: | TheScientificWorld 2014-01, Vol.2014 (2014), p.1-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23 |
container_end_page | 10 |
container_issue | 2014 |
container_start_page | 1 |
container_title | TheScientificWorld |
container_volume | 2014 |
creator | Ahmad, Zulfiqar Cox, James L. |
description | Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology. |
doi_str_mv | 10.1155/2014/567398 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_44a99ffa8ba0486e9852223614284a91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413712145</galeid><doaj_id>oai_doaj_org_article_44a99ffa8ba0486e9852223614284a91</doaj_id><sourcerecordid>A413712145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23</originalsourceid><addsrcrecordid>eNqNks1rFDEUwAdR7Fo9eZcBL6JMm-9kehDWYrVQP7AreAuZ5M1OltmkZmaV-teb7aylKx4kh5D3fvkl7_GK4ilGRxhzfkwQZsdcSFqre8UMcyorydi3-8WMUC4qgRk6KB4NwwohqiTmD4sDwgTiiItZcTZffC4vr8PYmQFOykUH5Re_7Mby0v-C8k0Olh-ig75sYyo_mhDXcYxpKH2YTuC89QEeFw9a0w_wZLcfFl_P3i5O31cXn96dn84vKisQGqvGUmqsAWVYK51gikqkXO2QorwG4TARnEnTOGqEZU6plhPLlKEgccOB0MPifPK6aFb6Kvm1Sdc6Gq9vAjEttUmjtz1oxkxdt61RjUFMCagVJ4TQ3A6icgpn1-vJdbVpch0WwphMvyfdzwTf6WX8oWlNOK9lFrzYCVL8voFh1Gs_WOh7EyBuBo05lkrWDNGMPv8LXcVNCrlVmRJMCkxvfrSjliYX4EMb87t2K9VzhqnEBDOeqaN_UHk5WHsbA7Q-x_cuvJou2BSHIUF7WyNGejtCejtCehqhTD-725Zb9s_MZODlBHQ-OPPT_58NMgKtuQNzhCmlvwE4lNNo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564761391</pqid></control><display><type>article</type><title>ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine</title><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Ahmad, Zulfiqar ; Cox, James L.</creator><contributor>Kalishwaralal, K. ; Liu, K.</contributor><creatorcontrib>Ahmad, Zulfiqar ; Cox, James L. ; Kalishwaralal, K. ; Liu, K.</creatorcontrib><description>Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/567398</identifier><identifier>PMID: 24605056</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adenosine triphosphatase ; Adenosine triphosphate ; Animals ; ATP ; ATP Synthetase Complexes - antagonists & inhibitors ; ATP Synthetase Complexes - chemistry ; ATP Synthetase Complexes - metabolism ; Bacteria ; Bacterial infections ; Catalysis ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; Dyneins - metabolism ; E coli ; Enzymes ; Flagella - metabolism ; Health aspects ; Humans ; Kinesin - metabolism ; Laboratories ; Medical research ; Medicine, Experimental ; Methods ; Myosins - metabolism ; Nanomedicine ; Nanotechnology ; Proteins ; Review ; RNA polymerase</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Zulfiqar Ahmad and James L. Cox.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Zulfiqar Ahmad and James L. Cox. Zulfiqar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Z. Ahmad and J. L. Cox. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23</citedby><cites>FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23</cites><orcidid>0000-0001-7306-8151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1564761391/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1564761391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24605056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kalishwaralal, K.</contributor><contributor>Liu, K.</contributor><creatorcontrib>Ahmad, Zulfiqar</creatorcontrib><creatorcontrib>Cox, James L.</creatorcontrib><title>ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine triphosphate</subject><subject>Animals</subject><subject>ATP</subject><subject>ATP Synthetase Complexes - antagonists & inhibitors</subject><subject>ATP Synthetase Complexes - chemistry</subject><subject>ATP Synthetase Complexes - metabolism</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Catalysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>Dyneins - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Flagella - metabolism</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Kinesin - metabolism</subject><subject>Laboratories</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Myosins - metabolism</subject><subject>Nanomedicine</subject><subject>Nanotechnology</subject><subject>Proteins</subject><subject>Review</subject><subject>RNA polymerase</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFDEUwAdR7Fo9eZcBL6JMm-9kehDWYrVQP7AreAuZ5M1OltmkZmaV-teb7aylKx4kh5D3fvkl7_GK4ilGRxhzfkwQZsdcSFqre8UMcyorydi3-8WMUC4qgRk6KB4NwwohqiTmD4sDwgTiiItZcTZffC4vr8PYmQFOykUH5Re_7Mby0v-C8k0Olh-ig75sYyo_mhDXcYxpKH2YTuC89QEeFw9a0w_wZLcfFl_P3i5O31cXn96dn84vKisQGqvGUmqsAWVYK51gikqkXO2QorwG4TARnEnTOGqEZU6plhPLlKEgccOB0MPifPK6aFb6Kvm1Sdc6Gq9vAjEttUmjtz1oxkxdt61RjUFMCagVJ4TQ3A6icgpn1-vJdbVpch0WwphMvyfdzwTf6WX8oWlNOK9lFrzYCVL8voFh1Gs_WOh7EyBuBo05lkrWDNGMPv8LXcVNCrlVmRJMCkxvfrSjliYX4EMb87t2K9VzhqnEBDOeqaN_UHk5WHsbA7Q-x_cuvJou2BSHIUF7WyNGejtCejtCehqhTD-725Zb9s_MZODlBHQ-OPPT_58NMgKtuQNzhCmlvwE4lNNo</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Ahmad, Zulfiqar</creator><creator>Cox, James L.</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7306-8151</orcidid></search><sort><creationdate>20140101</creationdate><title>ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine</title><author>Ahmad, Zulfiqar ; Cox, James L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine triphosphate</topic><topic>Animals</topic><topic>ATP</topic><topic>ATP Synthetase Complexes - antagonists & inhibitors</topic><topic>ATP Synthetase Complexes - chemistry</topic><topic>ATP Synthetase Complexes - metabolism</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Catalysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>Dyneins - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Flagella - metabolism</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Kinesin - metabolism</topic><topic>Laboratories</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Myosins - metabolism</topic><topic>Nanomedicine</topic><topic>Nanotechnology</topic><topic>Proteins</topic><topic>Review</topic><topic>RNA polymerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Zulfiqar</creatorcontrib><creatorcontrib>Cox, James L.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Zulfiqar</au><au>Cox, James L.</au><au>Kalishwaralal, K.</au><au>Liu, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24605056</pmid><doi>10.1155/2014/567398</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7306-8151</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2356-6140 |
ispartof | TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-10 |
issn | 2356-6140 1537-744X 1537-744X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_44a99ffa8ba0486e9852223614284a91 |
source | Publicly Available Content (ProQuest); Wiley Open Access; PubMed Central |
subjects | Adenosine triphosphatase Adenosine triphosphate Animals ATP ATP Synthetase Complexes - antagonists & inhibitors ATP Synthetase Complexes - chemistry ATP Synthetase Complexes - metabolism Bacteria Bacterial infections Catalysis Deoxyribonucleic acid DNA DNA polymerase Dyneins - metabolism E coli Enzymes Flagella - metabolism Health aspects Humans Kinesin - metabolism Laboratories Medical research Medicine, Experimental Methods Myosins - metabolism Nanomedicine Nanotechnology Proteins Review RNA polymerase |
title | ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATP%20Synthase:%20The%20Right%20Size%20Base%20Model%20for%20Nanomotors%20in%20Nanomedicine&rft.jtitle=TheScientificWorld&rft.au=Ahmad,%20Zulfiqar&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/567398&rft_dat=%3Cgale_doaj_%3EA413712145%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1564761391&rft_id=info:pmid/24605056&rft_galeid=A413712145&rfr_iscdi=true |