Loading…

ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine

Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are c...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-10
Main Authors: Ahmad, Zulfiqar, Cox, James L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23
cites cdi_FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23
container_end_page 10
container_issue 2014
container_start_page 1
container_title TheScientificWorld
container_volume 2014
creator Ahmad, Zulfiqar
Cox, James L.
description Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.
doi_str_mv 10.1155/2014/567398
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_44a99ffa8ba0486e9852223614284a91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413712145</galeid><doaj_id>oai_doaj_org_article_44a99ffa8ba0486e9852223614284a91</doaj_id><sourcerecordid>A413712145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23</originalsourceid><addsrcrecordid>eNqNks1rFDEUwAdR7Fo9eZcBL6JMm-9kehDWYrVQP7AreAuZ5M1OltmkZmaV-teb7aylKx4kh5D3fvkl7_GK4ilGRxhzfkwQZsdcSFqre8UMcyorydi3-8WMUC4qgRk6KB4NwwohqiTmD4sDwgTiiItZcTZffC4vr8PYmQFOykUH5Re_7Mby0v-C8k0Olh-ig75sYyo_mhDXcYxpKH2YTuC89QEeFw9a0w_wZLcfFl_P3i5O31cXn96dn84vKisQGqvGUmqsAWVYK51gikqkXO2QorwG4TARnEnTOGqEZU6plhPLlKEgccOB0MPifPK6aFb6Kvm1Sdc6Gq9vAjEttUmjtz1oxkxdt61RjUFMCagVJ4TQ3A6icgpn1-vJdbVpch0WwphMvyfdzwTf6WX8oWlNOK9lFrzYCVL8voFh1Gs_WOh7EyBuBo05lkrWDNGMPv8LXcVNCrlVmRJMCkxvfrSjliYX4EMb87t2K9VzhqnEBDOeqaN_UHk5WHsbA7Q-x_cuvJou2BSHIUF7WyNGejtCejtCehqhTD-725Zb9s_MZODlBHQ-OPPT_58NMgKtuQNzhCmlvwE4lNNo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564761391</pqid></control><display><type>article</type><title>ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine</title><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Ahmad, Zulfiqar ; Cox, James L.</creator><contributor>Kalishwaralal, K. ; Liu, K.</contributor><creatorcontrib>Ahmad, Zulfiqar ; Cox, James L. ; Kalishwaralal, K. ; Liu, K.</creatorcontrib><description>Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/567398</identifier><identifier>PMID: 24605056</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adenosine triphosphatase ; Adenosine triphosphate ; Animals ; ATP ; ATP Synthetase Complexes - antagonists &amp; inhibitors ; ATP Synthetase Complexes - chemistry ; ATP Synthetase Complexes - metabolism ; Bacteria ; Bacterial infections ; Catalysis ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; Dyneins - metabolism ; E coli ; Enzymes ; Flagella - metabolism ; Health aspects ; Humans ; Kinesin - metabolism ; Laboratories ; Medical research ; Medicine, Experimental ; Methods ; Myosins - metabolism ; Nanomedicine ; Nanotechnology ; Proteins ; Review ; RNA polymerase</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Zulfiqar Ahmad and James L. Cox.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Zulfiqar Ahmad and James L. Cox. Zulfiqar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Z. Ahmad and J. L. Cox. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23</citedby><cites>FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23</cites><orcidid>0000-0001-7306-8151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1564761391/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1564761391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24605056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kalishwaralal, K.</contributor><contributor>Liu, K.</contributor><creatorcontrib>Ahmad, Zulfiqar</creatorcontrib><creatorcontrib>Cox, James L.</creatorcontrib><title>ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine triphosphate</subject><subject>Animals</subject><subject>ATP</subject><subject>ATP Synthetase Complexes - antagonists &amp; inhibitors</subject><subject>ATP Synthetase Complexes - chemistry</subject><subject>ATP Synthetase Complexes - metabolism</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Catalysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>Dyneins - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Flagella - metabolism</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Kinesin - metabolism</subject><subject>Laboratories</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Myosins - metabolism</subject><subject>Nanomedicine</subject><subject>Nanotechnology</subject><subject>Proteins</subject><subject>Review</subject><subject>RNA polymerase</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFDEUwAdR7Fo9eZcBL6JMm-9kehDWYrVQP7AreAuZ5M1OltmkZmaV-teb7aylKx4kh5D3fvkl7_GK4ilGRxhzfkwQZsdcSFqre8UMcyorydi3-8WMUC4qgRk6KB4NwwohqiTmD4sDwgTiiItZcTZffC4vr8PYmQFOykUH5Re_7Mby0v-C8k0Olh-ig75sYyo_mhDXcYxpKH2YTuC89QEeFw9a0w_wZLcfFl_P3i5O31cXn96dn84vKisQGqvGUmqsAWVYK51gikqkXO2QorwG4TARnEnTOGqEZU6plhPLlKEgccOB0MPifPK6aFb6Kvm1Sdc6Gq9vAjEttUmjtz1oxkxdt61RjUFMCagVJ4TQ3A6icgpn1-vJdbVpch0WwphMvyfdzwTf6WX8oWlNOK9lFrzYCVL8voFh1Gs_WOh7EyBuBo05lkrWDNGMPv8LXcVNCrlVmRJMCkxvfrSjliYX4EMb87t2K9VzhqnEBDOeqaN_UHk5WHsbA7Q-x_cuvJou2BSHIUF7WyNGejtCejtCehqhTD-725Zb9s_MZODlBHQ-OPPT_58NMgKtuQNzhCmlvwE4lNNo</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Ahmad, Zulfiqar</creator><creator>Cox, James L.</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7306-8151</orcidid></search><sort><creationdate>20140101</creationdate><title>ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine</title><author>Ahmad, Zulfiqar ; Cox, James L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine triphosphate</topic><topic>Animals</topic><topic>ATP</topic><topic>ATP Synthetase Complexes - antagonists &amp; inhibitors</topic><topic>ATP Synthetase Complexes - chemistry</topic><topic>ATP Synthetase Complexes - metabolism</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Catalysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>Dyneins - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Flagella - metabolism</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Kinesin - metabolism</topic><topic>Laboratories</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Myosins - metabolism</topic><topic>Nanomedicine</topic><topic>Nanotechnology</topic><topic>Proteins</topic><topic>Review</topic><topic>RNA polymerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Zulfiqar</creatorcontrib><creatorcontrib>Cox, James L.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Zulfiqar</au><au>Cox, James L.</au><au>Kalishwaralal, K.</au><au>Liu, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24605056</pmid><doi>10.1155/2014/567398</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7306-8151</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2356-6140
ispartof TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-10
issn 2356-6140
1537-744X
1537-744X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_44a99ffa8ba0486e9852223614284a91
source Publicly Available Content (ProQuest); Wiley Open Access; PubMed Central
subjects Adenosine triphosphatase
Adenosine triphosphate
Animals
ATP
ATP Synthetase Complexes - antagonists & inhibitors
ATP Synthetase Complexes - chemistry
ATP Synthetase Complexes - metabolism
Bacteria
Bacterial infections
Catalysis
Deoxyribonucleic acid
DNA
DNA polymerase
Dyneins - metabolism
E coli
Enzymes
Flagella - metabolism
Health aspects
Humans
Kinesin - metabolism
Laboratories
Medical research
Medicine, Experimental
Methods
Myosins - metabolism
Nanomedicine
Nanotechnology
Proteins
Review
RNA polymerase
title ATP Synthase: The Right Size Base Model for Nanomotors in Nanomedicine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATP%20Synthase:%20The%20Right%20Size%20Base%20Model%20for%20Nanomotors%20in%20Nanomedicine&rft.jtitle=TheScientificWorld&rft.au=Ahmad,%20Zulfiqar&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/567398&rft_dat=%3Cgale_doaj_%3EA413712145%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c600t-bc33acae8a4f7d6483708d9d08359e6d126547abd3a6c4d88f52c48a3e71b5e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1564761391&rft_id=info:pmid/24605056&rft_galeid=A413712145&rfr_iscdi=true