Loading…

A Hierarchical Theoretical Study of the Hydrogen Abstraction Reactions of H2/C1–C4 Molecules by the Methyl Peroxy Radical and Implications for Kinetic Modeling

The hydrogen atom abstraction by the methyl peroxy radical (CH3O2) is an important reaction class in detailed chemical kinetic modeling of the autoignition properties of hydrocarbon fuels. Systematic theoretical studies are performed on this reaction class for H2/C1–C4 fuels, which is critical in th...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2022-03, Vol.7 (10), p.8675-8685
Main Authors: Xu, Shenying, Liang, Jinhu, Cao, Shutong, He, Ruining, Yin, Guoliang, Wang, Quan-De
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8685
container_issue 10
container_start_page 8675
container_title ACS omega
container_volume 7
creator Xu, Shenying
Liang, Jinhu
Cao, Shutong
He, Ruining
Yin, Guoliang
Wang, Quan-De
description The hydrogen atom abstraction by the methyl peroxy radical (CH3O2) is an important reaction class in detailed chemical kinetic modeling of the autoignition properties of hydrocarbon fuels. Systematic theoretical studies are performed on this reaction class for H2/C1–C4 fuels, which is critical in the development of a base model for large fuels. The molecules include hydrogen, alkanes, alkenes, and alkynes with a carbon number from 1 to 4. The B2PLYP-D3/cc-pVTZ level of theory is employed to optimize the geometries of all of the reactants, transition states, and products and also the treatments of hindered rotation for lower frequency modes. Accurate benchmark calculations for abstraction reactions of hydrogen, methane, and ethylene with CH3O2 are performed by using the coupled cluster method with explicit inclusion of single and double electron excitations and perturbative inclusion of triple electron excitations (CCSD­(T)), the domain-based local pair-natural orbital coupled cluster method (DLPNO-CCSD­(T)), and the explicitly correlated CCSD­(T)-F12 method with large basis sets. Reaction rate constants are computed via conventional transition state theory with quantum tunneling corrections. The computed rate constants are compared with literature values and those employed in detailed chemical kinetic mechanisms. The calculated rate constants are implemented into the recently developed NUIGMECH1.1 base model for kinetic modeling of ignition properties.
doi_str_mv 10.1021/acsomega.1c06683
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_44ab83fb8e1d4f6490fc3888890693f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_44ab83fb8e1d4f6490fc3888890693f0</doaj_id><sourcerecordid>2641515371</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-67e5ca8781dee2a60b7a2c713052fecbe71dbf69cfaa6c52db152a08022850f3</originalsourceid><addsrcrecordid>eNpVks1u1DAUhSMEolXpnqWXLJjWP4njbJBGI2BGbQUqs7du7OskI088OAkiO96BJ-DVeJJmJoNEvfGxfe53rauTJG8ZvWGUs1swXdhjBTfMUCmVeJFc8jSnCyZS8fI_fZFcd92OUsqk4orL18mFyAQtUpFfJn-WZN1ghGjqxoAn2xpDxP6kv_WDHUlwpK-RrEcbQ4UtWZZdH8H0TWjJI86iO7rW_HbF_v76vUrJQ_BoBo8dKcdT9QP29ejJV4zh50gewZ4aQGvJZn_w02GmuBDJXdMe-08Mi75pqzfJKwe-w-vzfpVsP33crtaL-y-fN6vl_QIEU_1C5pgZULliFpGDpGUO3ORM0Iw7NCXmzJZOFsYBSJNxW7KMA1WUc5VRJ66SzYy1AXb6EJs9xFEHaPTpIsRKQ5z-5VGnKZRKuFIhs6mTaUGdEWpaBZWFcHRifZhZh6HcozXYThPzz6DPX9qm1lX4oVXBlUjZBHh3BsTwfcCu1_umM-g9tBiGTnOZsoxlIj9a38_WKQ56F4bYTkPSjOpjRvS_jOhzRsQTrdKyyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641515371</pqid></control><display><type>article</type><title>A Hierarchical Theoretical Study of the Hydrogen Abstraction Reactions of H2/C1–C4 Molecules by the Methyl Peroxy Radical and Implications for Kinetic Modeling</title><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Xu, Shenying ; Liang, Jinhu ; Cao, Shutong ; He, Ruining ; Yin, Guoliang ; Wang, Quan-De</creator><creatorcontrib>Xu, Shenying ; Liang, Jinhu ; Cao, Shutong ; He, Ruining ; Yin, Guoliang ; Wang, Quan-De</creatorcontrib><description>The hydrogen atom abstraction by the methyl peroxy radical (CH3O2) is an important reaction class in detailed chemical kinetic modeling of the autoignition properties of hydrocarbon fuels. Systematic theoretical studies are performed on this reaction class for H2/C1–C4 fuels, which is critical in the development of a base model for large fuels. The molecules include hydrogen, alkanes, alkenes, and alkynes with a carbon number from 1 to 4. The B2PLYP-D3/cc-pVTZ level of theory is employed to optimize the geometries of all of the reactants, transition states, and products and also the treatments of hindered rotation for lower frequency modes. Accurate benchmark calculations for abstraction reactions of hydrogen, methane, and ethylene with CH3O2 are performed by using the coupled cluster method with explicit inclusion of single and double electron excitations and perturbative inclusion of triple electron excitations (CCSD­(T)), the domain-based local pair-natural orbital coupled cluster method (DLPNO-CCSD­(T)), and the explicitly correlated CCSD­(T)-F12 method with large basis sets. Reaction rate constants are computed via conventional transition state theory with quantum tunneling corrections. The computed rate constants are compared with literature values and those employed in detailed chemical kinetic mechanisms. The calculated rate constants are implemented into the recently developed NUIGMECH1.1 base model for kinetic modeling of ignition properties.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.1c06683</identifier><identifier>PMID: 35309437</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS omega, 2022-03, Vol.7 (10), p.8675-8685</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3941-0192 ; 0000-0003-3972-7664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.1c06683$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.1c06683$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27080,27924,27925,53791,53793,56762,56812</link.rule.ids></links><search><creatorcontrib>Xu, Shenying</creatorcontrib><creatorcontrib>Liang, Jinhu</creatorcontrib><creatorcontrib>Cao, Shutong</creatorcontrib><creatorcontrib>He, Ruining</creatorcontrib><creatorcontrib>Yin, Guoliang</creatorcontrib><creatorcontrib>Wang, Quan-De</creatorcontrib><title>A Hierarchical Theoretical Study of the Hydrogen Abstraction Reactions of H2/C1–C4 Molecules by the Methyl Peroxy Radical and Implications for Kinetic Modeling</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>The hydrogen atom abstraction by the methyl peroxy radical (CH3O2) is an important reaction class in detailed chemical kinetic modeling of the autoignition properties of hydrocarbon fuels. Systematic theoretical studies are performed on this reaction class for H2/C1–C4 fuels, which is critical in the development of a base model for large fuels. The molecules include hydrogen, alkanes, alkenes, and alkynes with a carbon number from 1 to 4. The B2PLYP-D3/cc-pVTZ level of theory is employed to optimize the geometries of all of the reactants, transition states, and products and also the treatments of hindered rotation for lower frequency modes. Accurate benchmark calculations for abstraction reactions of hydrogen, methane, and ethylene with CH3O2 are performed by using the coupled cluster method with explicit inclusion of single and double electron excitations and perturbative inclusion of triple electron excitations (CCSD­(T)), the domain-based local pair-natural orbital coupled cluster method (DLPNO-CCSD­(T)), and the explicitly correlated CCSD­(T)-F12 method with large basis sets. Reaction rate constants are computed via conventional transition state theory with quantum tunneling corrections. The computed rate constants are compared with literature values and those employed in detailed chemical kinetic mechanisms. The calculated rate constants are implemented into the recently developed NUIGMECH1.1 base model for kinetic modeling of ignition properties.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNpVks1u1DAUhSMEolXpnqWXLJjWP4njbJBGI2BGbQUqs7du7OskI088OAkiO96BJ-DVeJJmJoNEvfGxfe53rauTJG8ZvWGUs1swXdhjBTfMUCmVeJFc8jSnCyZS8fI_fZFcd92OUsqk4orL18mFyAQtUpFfJn-WZN1ghGjqxoAn2xpDxP6kv_WDHUlwpK-RrEcbQ4UtWZZdH8H0TWjJI86iO7rW_HbF_v76vUrJQ_BoBo8dKcdT9QP29ejJV4zh50gewZ4aQGvJZn_w02GmuBDJXdMe-08Mi75pqzfJKwe-w-vzfpVsP33crtaL-y-fN6vl_QIEU_1C5pgZULliFpGDpGUO3ORM0Iw7NCXmzJZOFsYBSJNxW7KMA1WUc5VRJ66SzYy1AXb6EJs9xFEHaPTpIsRKQ5z-5VGnKZRKuFIhs6mTaUGdEWpaBZWFcHRifZhZh6HcozXYThPzz6DPX9qm1lX4oVXBlUjZBHh3BsTwfcCu1_umM-g9tBiGTnOZsoxlIj9a38_WKQ56F4bYTkPSjOpjRvS_jOhzRsQTrdKyyg</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Xu, Shenying</creator><creator>Liang, Jinhu</creator><creator>Cao, Shutong</creator><creator>He, Ruining</creator><creator>Yin, Guoliang</creator><creator>Wang, Quan-De</creator><general>American Chemical Society</general><scope>N~.</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3941-0192</orcidid><orcidid>https://orcid.org/0000-0003-3972-7664</orcidid></search><sort><creationdate>20220315</creationdate><title>A Hierarchical Theoretical Study of the Hydrogen Abstraction Reactions of H2/C1–C4 Molecules by the Methyl Peroxy Radical and Implications for Kinetic Modeling</title><author>Xu, Shenying ; Liang, Jinhu ; Cao, Shutong ; He, Ruining ; Yin, Guoliang ; Wang, Quan-De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-67e5ca8781dee2a60b7a2c713052fecbe71dbf69cfaa6c52db152a08022850f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shenying</creatorcontrib><creatorcontrib>Liang, Jinhu</creatorcontrib><creatorcontrib>Cao, Shutong</creatorcontrib><creatorcontrib>He, Ruining</creatorcontrib><creatorcontrib>Yin, Guoliang</creatorcontrib><creatorcontrib>Wang, Quan-De</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shenying</au><au>Liang, Jinhu</au><au>Cao, Shutong</au><au>He, Ruining</au><au>Yin, Guoliang</au><au>Wang, Quan-De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Theoretical Study of the Hydrogen Abstraction Reactions of H2/C1–C4 Molecules by the Methyl Peroxy Radical and Implications for Kinetic Modeling</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2022-03-15</date><risdate>2022</risdate><volume>7</volume><issue>10</issue><spage>8675</spage><epage>8685</epage><pages>8675-8685</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>The hydrogen atom abstraction by the methyl peroxy radical (CH3O2) is an important reaction class in detailed chemical kinetic modeling of the autoignition properties of hydrocarbon fuels. Systematic theoretical studies are performed on this reaction class for H2/C1–C4 fuels, which is critical in the development of a base model for large fuels. The molecules include hydrogen, alkanes, alkenes, and alkynes with a carbon number from 1 to 4. The B2PLYP-D3/cc-pVTZ level of theory is employed to optimize the geometries of all of the reactants, transition states, and products and also the treatments of hindered rotation for lower frequency modes. Accurate benchmark calculations for abstraction reactions of hydrogen, methane, and ethylene with CH3O2 are performed by using the coupled cluster method with explicit inclusion of single and double electron excitations and perturbative inclusion of triple electron excitations (CCSD­(T)), the domain-based local pair-natural orbital coupled cluster method (DLPNO-CCSD­(T)), and the explicitly correlated CCSD­(T)-F12 method with large basis sets. Reaction rate constants are computed via conventional transition state theory with quantum tunneling corrections. The computed rate constants are compared with literature values and those employed in detailed chemical kinetic mechanisms. The calculated rate constants are implemented into the recently developed NUIGMECH1.1 base model for kinetic modeling of ignition properties.</abstract><pub>American Chemical Society</pub><pmid>35309437</pmid><doi>10.1021/acsomega.1c06683</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3941-0192</orcidid><orcidid>https://orcid.org/0000-0003-3972-7664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2022-03, Vol.7 (10), p.8675-8685
issn 2470-1343
2470-1343
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_44ab83fb8e1d4f6490fc3888890693f0
source American Chemical Society (ACS) Open Access; PubMed Central
title A Hierarchical Theoretical Study of the Hydrogen Abstraction Reactions of H2/C1–C4 Molecules by the Methyl Peroxy Radical and Implications for Kinetic Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Theoretical%20Study%20of%20the%20Hydrogen%20Abstraction%20Reactions%20of%20H2/C1%E2%80%93C4%20Molecules%20by%20the%20Methyl%20Peroxy%20Radical%20and%20Implications%20for%20Kinetic%20Modeling&rft.jtitle=ACS%20omega&rft.au=Xu,%20Shenying&rft.date=2022-03-15&rft.volume=7&rft.issue=10&rft.spage=8675&rft.epage=8685&rft.pages=8675-8685&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.1c06683&rft_dat=%3Cproquest_doaj_%3E2641515371%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a318t-67e5ca8781dee2a60b7a2c713052fecbe71dbf69cfaa6c52db152a08022850f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641515371&rft_id=info:pmid/35309437&rfr_iscdi=true