Loading…
Gold nanoparticles and near-infrared light as a new tool to enhance tissue regeneration
Controlled temperature elevation within biological tissues, known as hyperthermia, holds promise as a therapeutic treatment. Its efficacy depends on several factors including timing, pulsing, and repetition. Recent research indicates the potential of heat-based therapies not only for cancer treatmen...
Saved in:
Published in: | EPJ Web of conferences 2024, Vol.309, p.4009 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Controlled temperature elevation within biological tissues, known as hyperthermia, holds promise as a therapeutic treatment. Its efficacy depends on several factors including timing, pulsing, and repetition. Recent research indicates the potential of heat-based therapies not only for cancer treatment but also in tissue regeneration. The usage of photothermal agents, such as gold nanoparticles, enables precise spatio-temporal heat generation, known as photothermal therapy (PTT). Hydra vulgaris , with their unique regenerative capabilities, serve as valuable models for exploring the effects of nanoparticles on tissue regeneration. AuNPs thanks to their plasmonic properties can induce physiological responses in the animals under near-infrared (NIR) irradiation, ranging from cell ablation to programmed cell death or thermotolerance. By tuning the NIR irradiation and the AuNPs dose, the capability of treated polyps to regenerate the missing heads under photostimulation will be dissected, at whole animal, cellular and molecular levels and compared to exposure to external macroscopic heat sources. |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/202430904009 |