Loading…
Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials
Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. Howev...
Saved in:
Published in: | Arquivos brasileiros de cardiologia 2017-12, Vol.109 (6), p.579-589 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-52e39483c9de7bf90ea4b88e8b017d8ee31d6d9a8129dff4ed293f1752b68baf3 |
---|---|
cites | |
container_end_page | 589 |
container_issue | 6 |
container_start_page | 579 |
container_title | Arquivos brasileiros de cardiologia |
container_volume | 109 |
creator | José, Vitória Santório de São Monnerat, Gustavo Guerra, Barbara Paredes, Bruno Dias Kasai-Brunswick, Tais Hanae Carvalho, Antonio Carlos Campos de Medei, Emiliano |
description | Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown.
To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats.
Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05.
In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats.
MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin. |
doi_str_mv | 10.5935/abc.20170176 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_44f6f2577d594a1b9a3b0198e181b3e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0066_782X2017001500579</scielo_id><doaj_id>oai_doaj_org_article_44f6f2577d594a1b9a3b0198e181b3e3</doaj_id><sourcerecordid>1990854099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-52e39483c9de7bf90ea4b88e8b017d8ee31d6d9a8129dff4ed293f1752b68baf3</originalsourceid><addsrcrecordid>eNpVUt9v0zAQjhCIdYM3nlEeh0SKHduJ_YI0OmCTVkB0SLxZl_iyukriYiedxl-Ps64TkyydfPfdd9_9SJI3lMyFYuIDVPU8J7SMr3iWzGhRyozH7_NkRkhRZKXMfx8lxyFsCMnzkomXyVGuWMGZILPk7yfXY7YE791tdo7e7tCkSwzY1-u7Dtp0NXg32QW2bUhPl6vFu7SJrvTcQoWDrVPoTfrN9ebw_wlDSC9gh-nKdrYFn16v0cMWxyn6ww3YDxba8Cp50USDrx_sSfLry-frxUV29f3r5eLsKqu5VEMmcmSKS1Yrg2XVKILAKylRVrFjIxEZNYVRIGmuTNNwNLG7hpYirwpZQcNOkss9r3Gw0VtvO_B32oHV9w7nbzT4KK1FzXlTNLkoSyMUB1opYLGKkkglrRiyyDXfc4XaYuv0xo2-j-L1apq1nmZ9vwtCBSGiVDHh4z5hO1Ydmjr27qF9ouJppLdrfeN2WpSScTYRnD4QePdnxDDozoY6LgN6dGPQVCkiBSdqgr7fQ2vvQvDYPJahRE-3ouOt6MOtRPjb_6U9gg_Hwf4BdL25Pg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990854099</pqid></control><display><type>article</type><title>Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials</title><source>SciELO</source><source>PubMed Central</source><creator>José, Vitória Santório de São ; Monnerat, Gustavo ; Guerra, Barbara ; Paredes, Bruno Dias ; Kasai-Brunswick, Tais Hanae ; Carvalho, Antonio Carlos Campos de ; Medei, Emiliano</creator><creatorcontrib>José, Vitória Santório de São ; Monnerat, Gustavo ; Guerra, Barbara ; Paredes, Bruno Dias ; Kasai-Brunswick, Tais Hanae ; Carvalho, Antonio Carlos Campos de ; Medei, Emiliano</creatorcontrib><description>Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown.
To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats.
Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05.
In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats.
MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin.</description><identifier>ISSN: 0066-782X</identifier><identifier>ISSN: 1678-4170</identifier><identifier>EISSN: 1678-4170</identifier><identifier>DOI: 10.5935/abc.20170176</identifier><identifier>PMID: 29364350</identifier><language>eng</language><publisher>Brazil: Sociedade Brasileira de Cardiologia - SBC</publisher><subject>CARDIAC & CARDIOVASCULAR SYSTEMS ; Cardiac Electrophysiology ; Cell and Tissue-Based Therapy ; Diabetes Mellitus ; Mesenchymal Stromal Cells ; Original ; Rats</subject><ispartof>Arquivos brasileiros de cardiologia, 2017-12, Vol.109 (6), p.579-589</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-52e39483c9de7bf90ea4b88e8b017d8ee31d6d9a8129dff4ed293f1752b68baf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5783439/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5783439/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,24149,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29364350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>José, Vitória Santório de São</creatorcontrib><creatorcontrib>Monnerat, Gustavo</creatorcontrib><creatorcontrib>Guerra, Barbara</creatorcontrib><creatorcontrib>Paredes, Bruno Dias</creatorcontrib><creatorcontrib>Kasai-Brunswick, Tais Hanae</creatorcontrib><creatorcontrib>Carvalho, Antonio Carlos Campos de</creatorcontrib><creatorcontrib>Medei, Emiliano</creatorcontrib><title>Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials</title><title>Arquivos brasileiros de cardiologia</title><addtitle>Arq Bras Cardiol</addtitle><description>Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown.
To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats.
Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05.
In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats.
MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin.</description><subject>CARDIAC & CARDIOVASCULAR SYSTEMS</subject><subject>Cardiac Electrophysiology</subject><subject>Cell and Tissue-Based Therapy</subject><subject>Diabetes Mellitus</subject><subject>Mesenchymal Stromal Cells</subject><subject>Original</subject><subject>Rats</subject><issn>0066-782X</issn><issn>1678-4170</issn><issn>1678-4170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUt9v0zAQjhCIdYM3nlEeh0SKHduJ_YI0OmCTVkB0SLxZl_iyukriYiedxl-Ps64TkyydfPfdd9_9SJI3lMyFYuIDVPU8J7SMr3iWzGhRyozH7_NkRkhRZKXMfx8lxyFsCMnzkomXyVGuWMGZILPk7yfXY7YE791tdo7e7tCkSwzY1-u7Dtp0NXg32QW2bUhPl6vFu7SJrvTcQoWDrVPoTfrN9ebw_wlDSC9gh-nKdrYFn16v0cMWxyn6ww3YDxba8Cp50USDrx_sSfLry-frxUV29f3r5eLsKqu5VEMmcmSKS1Yrg2XVKILAKylRVrFjIxEZNYVRIGmuTNNwNLG7hpYirwpZQcNOkss9r3Gw0VtvO_B32oHV9w7nbzT4KK1FzXlTNLkoSyMUB1opYLGKkkglrRiyyDXfc4XaYuv0xo2-j-L1apq1nmZ9vwtCBSGiVDHh4z5hO1Ydmjr27qF9ouJppLdrfeN2WpSScTYRnD4QePdnxDDozoY6LgN6dGPQVCkiBSdqgr7fQ2vvQvDYPJahRE-3ouOt6MOtRPjb_6U9gg_Hwf4BdL25Pg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>José, Vitória Santório de São</creator><creator>Monnerat, Gustavo</creator><creator>Guerra, Barbara</creator><creator>Paredes, Bruno Dias</creator><creator>Kasai-Brunswick, Tais Hanae</creator><creator>Carvalho, Antonio Carlos Campos de</creator><creator>Medei, Emiliano</creator><general>Sociedade Brasileira de Cardiologia - SBC</general><general>Sociedade Brasileira de Cardiologia (SBC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>GPN</scope><scope>DOA</scope></search><sort><creationdate>20171201</creationdate><title>Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials</title><author>José, Vitória Santório de São ; Monnerat, Gustavo ; Guerra, Barbara ; Paredes, Bruno Dias ; Kasai-Brunswick, Tais Hanae ; Carvalho, Antonio Carlos Campos de ; Medei, Emiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-52e39483c9de7bf90ea4b88e8b017d8ee31d6d9a8129dff4ed293f1752b68baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CARDIAC & CARDIOVASCULAR SYSTEMS</topic><topic>Cardiac Electrophysiology</topic><topic>Cell and Tissue-Based Therapy</topic><topic>Diabetes Mellitus</topic><topic>Mesenchymal Stromal Cells</topic><topic>Original</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>José, Vitória Santório de São</creatorcontrib><creatorcontrib>Monnerat, Gustavo</creatorcontrib><creatorcontrib>Guerra, Barbara</creatorcontrib><creatorcontrib>Paredes, Bruno Dias</creatorcontrib><creatorcontrib>Kasai-Brunswick, Tais Hanae</creatorcontrib><creatorcontrib>Carvalho, Antonio Carlos Campos de</creatorcontrib><creatorcontrib>Medei, Emiliano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SciELO</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Arquivos brasileiros de cardiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>José, Vitória Santório de São</au><au>Monnerat, Gustavo</au><au>Guerra, Barbara</au><au>Paredes, Bruno Dias</au><au>Kasai-Brunswick, Tais Hanae</au><au>Carvalho, Antonio Carlos Campos de</au><au>Medei, Emiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials</atitle><jtitle>Arquivos brasileiros de cardiologia</jtitle><addtitle>Arq Bras Cardiol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>109</volume><issue>6</issue><spage>579</spage><epage>589</epage><pages>579-589</pages><issn>0066-782X</issn><issn>1678-4170</issn><eissn>1678-4170</eissn><abstract>Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown.
To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats.
Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05.
In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats.
MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin.</abstract><cop>Brazil</cop><pub>Sociedade Brasileira de Cardiologia - SBC</pub><pmid>29364350</pmid><doi>10.5935/abc.20170176</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-782X |
ispartof | Arquivos brasileiros de cardiologia, 2017-12, Vol.109 (6), p.579-589 |
issn | 0066-782X 1678-4170 1678-4170 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_44f6f2577d594a1b9a3b0198e181b3e3 |
source | SciELO; PubMed Central |
subjects | CARDIAC & CARDIOVASCULAR SYSTEMS Cardiac Electrophysiology Cell and Tissue-Based Therapy Diabetes Mellitus Mesenchymal Stromal Cells Original Rats |
title | Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone-Marrow-Derived%20Mesenchymal%20Stromal%20Cells%20(MSC)%20from%20Diabetic%20and%20Nondiabetic%20Rats%20Have%20Similar%20Therapeutic%20Potentials&rft.jtitle=Arquivos%20brasileiros%20de%20cardiologia&rft.au=Jos%C3%A9,%20Vit%C3%B3ria%20Sant%C3%B3rio%20de%20S%C3%A3o&rft.date=2017-12-01&rft.volume=109&rft.issue=6&rft.spage=579&rft.epage=589&rft.pages=579-589&rft.issn=0066-782X&rft.eissn=1678-4170&rft_id=info:doi/10.5935/abc.20170176&rft_dat=%3Cproquest_doaj_%3E1990854099%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-52e39483c9de7bf90ea4b88e8b017d8ee31d6d9a8129dff4ed293f1752b68baf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1990854099&rft_id=info:pmid/29364350&rft_scielo_id=S0066_782X2017001500579&rfr_iscdi=true |