Loading…

Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI

•Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity. Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are asso...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral circulation - cognition and behavior 2022-01, Vol.3, p.100142, Article 100142
Main Authors: Spijkerman, J.M., Zwanenburg, J.J.M., Bouvy, W.H., Geerlings, M.I., Biessels, G.J., Hendrikse, J., Luijten, P.R., Kuijf, H.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3
cites cdi_FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3
container_end_page
container_issue
container_start_page 100142
container_title Cerebral circulation - cognition and behavior
container_volume 3
creator Spijkerman, J.M.
Zwanenburg, J.J.M.
Bouvy, W.H.
Geerlings, M.I.
Biessels, G.J.
Hendrikse, J.
Luijten, P.R.
Kuijf, H.J.
description •Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity. Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS. A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method. Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length
doi_str_mv 10.1016/j.cccb.2022.100142
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_44fd2cf3da0c44aea0f0b0a90bd62ae5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666245022001076</els_id><doaj_id>oai_doaj_org_article_44fd2cf3da0c44aea0f0b0a90bd62ae5</doaj_id><sourcerecordid>2731721853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi0EolXpC7BAXrKZ4Ns4sYSQqopLpCIQCmvrjH2cOpqMU3smiLfHYUrVbljZPv7Pdy4_Ia85W3DG9bvdwjnXLQQTogYYV-IZORda60aolj1_dD8jl6XsGGOi5Xwl-UtyJrUUSpr2nHy_msa0hzE6ejfBMMYQXX2lgaZAD5jjEYqbesi0HMBhoXGgG9H8wri9HdHTuIdtjcJIl3RDv_5YvyIvAvQFL-_PC_Lz08fN9Zfm5tvn9fXVTeNUy8fG11a4Vwpb9CtvAnTKMAgITHdGgWIGJPOm1Z2TLAjTedfqoHWQQcjOOHlB1jPXJ9jZQ66N5N82QbR_AylvLeQ6Vo9WqeCFC9IDc0pBrRFYx8CwzmsB2FbWh5l1mLo9eofDmKF_An36M8Rbu01HazTXYiUr4O09IKe7Ccto97E47HsYME3FiqXkS8FX7UkqZqnLqZSM4aEMZ_bkrN3Zk7P25Kydna1Jbx43-JDyz8cqeD8LsK78GDHb4iIODn3M6Ma6k_g__h-rx7UD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731721853</pqid></control><display><type>article</type><title>Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI</title><source>ScienceDirect</source><source>PubMed Central Free</source><creator>Spijkerman, J.M. ; Zwanenburg, J.J.M. ; Bouvy, W.H. ; Geerlings, M.I. ; Biessels, G.J. ; Hendrikse, J. ; Luijten, P.R. ; Kuijf, H.J.</creator><creatorcontrib>Spijkerman, J.M. ; Zwanenburg, J.J.M. ; Bouvy, W.H. ; Geerlings, M.I. ; Biessels, G.J. ; Hendrikse, J. ; Luijten, P.R. ; Kuijf, H.J.</creatorcontrib><description>•Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity. Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS. A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method. Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length &lt;2 mm). For 20 subjects manual PVS annotations of a second observer were available. Compared with the correlation between the automatic and manual PVS, higher inter-observer ICC was observed (0.85/0.88), but DSC was lower (0.49 in 4 persons). Longer PVS are observed posterior in the CSO compared with anterior in the CSO. Higher PVS tortuosity are observed in the center of the CSO compared with the periphery of the CSO. Our fully automatic method can detect PVS in a 2D slab in the CSO, and extract quantitative PVS parameters by performing 3D tracking. This method enables automated quantitative analysis of PVS.</description><identifier>ISSN: 2666-2450</identifier><identifier>EISSN: 2666-2450</identifier><identifier>DOI: 10.1016/j.cccb.2022.100142</identifier><identifier>PMID: 36324395</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>7 tesla MRI ; Centrum semiovale ; Machine learning ; Perivascular spaces ; Quantification</subject><ispartof>Cerebral circulation - cognition and behavior, 2022-01, Vol.3, p.100142, Article 100142</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s).</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3</citedby><cites>FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3</cites><orcidid>0000-0001-6997-9059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616283/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666245022001076$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36324395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spijkerman, J.M.</creatorcontrib><creatorcontrib>Zwanenburg, J.J.M.</creatorcontrib><creatorcontrib>Bouvy, W.H.</creatorcontrib><creatorcontrib>Geerlings, M.I.</creatorcontrib><creatorcontrib>Biessels, G.J.</creatorcontrib><creatorcontrib>Hendrikse, J.</creatorcontrib><creatorcontrib>Luijten, P.R.</creatorcontrib><creatorcontrib>Kuijf, H.J.</creatorcontrib><title>Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI</title><title>Cerebral circulation - cognition and behavior</title><addtitle>Cereb Circ Cogn Behav</addtitle><description>•Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity. Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS. A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method. Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length &lt;2 mm). For 20 subjects manual PVS annotations of a second observer were available. Compared with the correlation between the automatic and manual PVS, higher inter-observer ICC was observed (0.85/0.88), but DSC was lower (0.49 in 4 persons). Longer PVS are observed posterior in the CSO compared with anterior in the CSO. Higher PVS tortuosity are observed in the center of the CSO compared with the periphery of the CSO. Our fully automatic method can detect PVS in a 2D slab in the CSO, and extract quantitative PVS parameters by performing 3D tracking. This method enables automated quantitative analysis of PVS.</description><subject>7 tesla MRI</subject><subject>Centrum semiovale</subject><subject>Machine learning</subject><subject>Perivascular spaces</subject><subject>Quantification</subject><issn>2666-2450</issn><issn>2666-2450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctuEzEUhi0EolXpC7BAXrKZ4Ns4sYSQqopLpCIQCmvrjH2cOpqMU3smiLfHYUrVbljZPv7Pdy4_Ia85W3DG9bvdwjnXLQQTogYYV-IZORda60aolj1_dD8jl6XsGGOi5Xwl-UtyJrUUSpr2nHy_msa0hzE6ejfBMMYQXX2lgaZAD5jjEYqbesi0HMBhoXGgG9H8wri9HdHTuIdtjcJIl3RDv_5YvyIvAvQFL-_PC_Lz08fN9Zfm5tvn9fXVTeNUy8fG11a4Vwpb9CtvAnTKMAgITHdGgWIGJPOm1Z2TLAjTedfqoHWQQcjOOHlB1jPXJ9jZQ66N5N82QbR_AylvLeQ6Vo9WqeCFC9IDc0pBrRFYx8CwzmsB2FbWh5l1mLo9eofDmKF_An36M8Rbu01HazTXYiUr4O09IKe7Ccto97E47HsYME3FiqXkS8FX7UkqZqnLqZSM4aEMZ_bkrN3Zk7P25Kydna1Jbx43-JDyz8cqeD8LsK78GDHb4iIODn3M6Ma6k_g__h-rx7UD</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Spijkerman, J.M.</creator><creator>Zwanenburg, J.J.M.</creator><creator>Bouvy, W.H.</creator><creator>Geerlings, M.I.</creator><creator>Biessels, G.J.</creator><creator>Hendrikse, J.</creator><creator>Luijten, P.R.</creator><creator>Kuijf, H.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6997-9059</orcidid></search><sort><creationdate>20220101</creationdate><title>Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI</title><author>Spijkerman, J.M. ; Zwanenburg, J.J.M. ; Bouvy, W.H. ; Geerlings, M.I. ; Biessels, G.J. ; Hendrikse, J. ; Luijten, P.R. ; Kuijf, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>7 tesla MRI</topic><topic>Centrum semiovale</topic><topic>Machine learning</topic><topic>Perivascular spaces</topic><topic>Quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spijkerman, J.M.</creatorcontrib><creatorcontrib>Zwanenburg, J.J.M.</creatorcontrib><creatorcontrib>Bouvy, W.H.</creatorcontrib><creatorcontrib>Geerlings, M.I.</creatorcontrib><creatorcontrib>Biessels, G.J.</creatorcontrib><creatorcontrib>Hendrikse, J.</creatorcontrib><creatorcontrib>Luijten, P.R.</creatorcontrib><creatorcontrib>Kuijf, H.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cerebral circulation - cognition and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spijkerman, J.M.</au><au>Zwanenburg, J.J.M.</au><au>Bouvy, W.H.</au><au>Geerlings, M.I.</au><au>Biessels, G.J.</au><au>Hendrikse, J.</au><au>Luijten, P.R.</au><au>Kuijf, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI</atitle><jtitle>Cerebral circulation - cognition and behavior</jtitle><addtitle>Cereb Circ Cogn Behav</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>3</volume><spage>100142</spage><pages>100142-</pages><artnum>100142</artnum><issn>2666-2450</issn><eissn>2666-2450</eissn><abstract>•Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity. Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS. A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method. Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length &lt;2 mm). For 20 subjects manual PVS annotations of a second observer were available. Compared with the correlation between the automatic and manual PVS, higher inter-observer ICC was observed (0.85/0.88), but DSC was lower (0.49 in 4 persons). Longer PVS are observed posterior in the CSO compared with anterior in the CSO. Higher PVS tortuosity are observed in the center of the CSO compared with the periphery of the CSO. Our fully automatic method can detect PVS in a 2D slab in the CSO, and extract quantitative PVS parameters by performing 3D tracking. This method enables automated quantitative analysis of PVS.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36324395</pmid><doi>10.1016/j.cccb.2022.100142</doi><orcidid>https://orcid.org/0000-0001-6997-9059</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-2450
ispartof Cerebral circulation - cognition and behavior, 2022-01, Vol.3, p.100142, Article 100142
issn 2666-2450
2666-2450
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_44fd2cf3da0c44aea0f0b0a90bd62ae5
source ScienceDirect; PubMed Central Free
subjects 7 tesla MRI
Centrum semiovale
Machine learning
Perivascular spaces
Quantification
title Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20quantification%20of%20perivascular%20spaces%20in%20T2-weighted%20images%20at%207%20T%20MRI&rft.jtitle=Cerebral%20circulation%20-%20cognition%20and%20behavior&rft.au=Spijkerman,%20J.M.&rft.date=2022-01-01&rft.volume=3&rft.spage=100142&rft.pages=100142-&rft.artnum=100142&rft.issn=2666-2450&rft.eissn=2666-2450&rft_id=info:doi/10.1016/j.cccb.2022.100142&rft_dat=%3Cproquest_doaj_%3E2731721853%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731721853&rft_id=info:pmid/36324395&rfr_iscdi=true