Loading…
Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI
•Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity. Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are asso...
Saved in:
Published in: | Cerebral circulation - cognition and behavior 2022-01, Vol.3, p.100142, Article 100142 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3 |
container_end_page | |
container_issue | |
container_start_page | 100142 |
container_title | Cerebral circulation - cognition and behavior |
container_volume | 3 |
creator | Spijkerman, J.M. Zwanenburg, J.J.M. Bouvy, W.H. Geerlings, M.I. Biessels, G.J. Hendrikse, J. Luijten, P.R. Kuijf, H.J. |
description | •Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity.
Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS.
A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method.
Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length |
doi_str_mv | 10.1016/j.cccb.2022.100142 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_44fd2cf3da0c44aea0f0b0a90bd62ae5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666245022001076</els_id><doaj_id>oai_doaj_org_article_44fd2cf3da0c44aea0f0b0a90bd62ae5</doaj_id><sourcerecordid>2731721853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi0EolXpC7BAXrKZ4Ns4sYSQqopLpCIQCmvrjH2cOpqMU3smiLfHYUrVbljZPv7Pdy4_Ia85W3DG9bvdwjnXLQQTogYYV-IZORda60aolj1_dD8jl6XsGGOi5Xwl-UtyJrUUSpr2nHy_msa0hzE6ejfBMMYQXX2lgaZAD5jjEYqbesi0HMBhoXGgG9H8wri9HdHTuIdtjcJIl3RDv_5YvyIvAvQFL-_PC_Lz08fN9Zfm5tvn9fXVTeNUy8fG11a4Vwpb9CtvAnTKMAgITHdGgWIGJPOm1Z2TLAjTedfqoHWQQcjOOHlB1jPXJ9jZQ66N5N82QbR_AylvLeQ6Vo9WqeCFC9IDc0pBrRFYx8CwzmsB2FbWh5l1mLo9eofDmKF_An36M8Rbu01HazTXYiUr4O09IKe7Ccto97E47HsYME3FiqXkS8FX7UkqZqnLqZSM4aEMZ_bkrN3Zk7P25Kydna1Jbx43-JDyz8cqeD8LsK78GDHb4iIODn3M6Ma6k_g__h-rx7UD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731721853</pqid></control><display><type>article</type><title>Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI</title><source>ScienceDirect</source><source>PubMed Central Free</source><creator>Spijkerman, J.M. ; Zwanenburg, J.J.M. ; Bouvy, W.H. ; Geerlings, M.I. ; Biessels, G.J. ; Hendrikse, J. ; Luijten, P.R. ; Kuijf, H.J.</creator><creatorcontrib>Spijkerman, J.M. ; Zwanenburg, J.J.M. ; Bouvy, W.H. ; Geerlings, M.I. ; Biessels, G.J. ; Hendrikse, J. ; Luijten, P.R. ; Kuijf, H.J.</creatorcontrib><description>•Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity.
Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS.
A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method.
Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length <2 mm). For 20 subjects manual PVS annotations of a second observer were available. Compared with the correlation between the automatic and manual PVS, higher inter-observer ICC was observed (0.85/0.88), but DSC was lower (0.49 in 4 persons). Longer PVS are observed posterior in the CSO compared with anterior in the CSO. Higher PVS tortuosity are observed in the center of the CSO compared with the periphery of the CSO.
Our fully automatic method can detect PVS in a 2D slab in the CSO, and extract quantitative PVS parameters by performing 3D tracking. This method enables automated quantitative analysis of PVS.</description><identifier>ISSN: 2666-2450</identifier><identifier>EISSN: 2666-2450</identifier><identifier>DOI: 10.1016/j.cccb.2022.100142</identifier><identifier>PMID: 36324395</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>7 tesla MRI ; Centrum semiovale ; Machine learning ; Perivascular spaces ; Quantification</subject><ispartof>Cerebral circulation - cognition and behavior, 2022-01, Vol.3, p.100142, Article 100142</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s).</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3</citedby><cites>FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3</cites><orcidid>0000-0001-6997-9059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616283/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666245022001076$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36324395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spijkerman, J.M.</creatorcontrib><creatorcontrib>Zwanenburg, J.J.M.</creatorcontrib><creatorcontrib>Bouvy, W.H.</creatorcontrib><creatorcontrib>Geerlings, M.I.</creatorcontrib><creatorcontrib>Biessels, G.J.</creatorcontrib><creatorcontrib>Hendrikse, J.</creatorcontrib><creatorcontrib>Luijten, P.R.</creatorcontrib><creatorcontrib>Kuijf, H.J.</creatorcontrib><title>Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI</title><title>Cerebral circulation - cognition and behavior</title><addtitle>Cereb Circ Cogn Behav</addtitle><description>•Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity.
Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS.
A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method.
Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length <2 mm). For 20 subjects manual PVS annotations of a second observer were available. Compared with the correlation between the automatic and manual PVS, higher inter-observer ICC was observed (0.85/0.88), but DSC was lower (0.49 in 4 persons). Longer PVS are observed posterior in the CSO compared with anterior in the CSO. Higher PVS tortuosity are observed in the center of the CSO compared with the periphery of the CSO.
Our fully automatic method can detect PVS in a 2D slab in the CSO, and extract quantitative PVS parameters by performing 3D tracking. This method enables automated quantitative analysis of PVS.</description><subject>7 tesla MRI</subject><subject>Centrum semiovale</subject><subject>Machine learning</subject><subject>Perivascular spaces</subject><subject>Quantification</subject><issn>2666-2450</issn><issn>2666-2450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctuEzEUhi0EolXpC7BAXrKZ4Ns4sYSQqopLpCIQCmvrjH2cOpqMU3smiLfHYUrVbljZPv7Pdy4_Ia85W3DG9bvdwjnXLQQTogYYV-IZORda60aolj1_dD8jl6XsGGOi5Xwl-UtyJrUUSpr2nHy_msa0hzE6ejfBMMYQXX2lgaZAD5jjEYqbesi0HMBhoXGgG9H8wri9HdHTuIdtjcJIl3RDv_5YvyIvAvQFL-_PC_Lz08fN9Zfm5tvn9fXVTeNUy8fG11a4Vwpb9CtvAnTKMAgITHdGgWIGJPOm1Z2TLAjTedfqoHWQQcjOOHlB1jPXJ9jZQ66N5N82QbR_AylvLeQ6Vo9WqeCFC9IDc0pBrRFYx8CwzmsB2FbWh5l1mLo9eofDmKF_An36M8Rbu01HazTXYiUr4O09IKe7Ccto97E47HsYME3FiqXkS8FX7UkqZqnLqZSM4aEMZ_bkrN3Zk7P25Kydna1Jbx43-JDyz8cqeD8LsK78GDHb4iIODn3M6Ma6k_g__h-rx7UD</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Spijkerman, J.M.</creator><creator>Zwanenburg, J.J.M.</creator><creator>Bouvy, W.H.</creator><creator>Geerlings, M.I.</creator><creator>Biessels, G.J.</creator><creator>Hendrikse, J.</creator><creator>Luijten, P.R.</creator><creator>Kuijf, H.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6997-9059</orcidid></search><sort><creationdate>20220101</creationdate><title>Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI</title><author>Spijkerman, J.M. ; Zwanenburg, J.J.M. ; Bouvy, W.H. ; Geerlings, M.I. ; Biessels, G.J. ; Hendrikse, J. ; Luijten, P.R. ; Kuijf, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>7 tesla MRI</topic><topic>Centrum semiovale</topic><topic>Machine learning</topic><topic>Perivascular spaces</topic><topic>Quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spijkerman, J.M.</creatorcontrib><creatorcontrib>Zwanenburg, J.J.M.</creatorcontrib><creatorcontrib>Bouvy, W.H.</creatorcontrib><creatorcontrib>Geerlings, M.I.</creatorcontrib><creatorcontrib>Biessels, G.J.</creatorcontrib><creatorcontrib>Hendrikse, J.</creatorcontrib><creatorcontrib>Luijten, P.R.</creatorcontrib><creatorcontrib>Kuijf, H.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cerebral circulation - cognition and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spijkerman, J.M.</au><au>Zwanenburg, J.J.M.</au><au>Bouvy, W.H.</au><au>Geerlings, M.I.</au><au>Biessels, G.J.</au><au>Hendrikse, J.</au><au>Luijten, P.R.</au><au>Kuijf, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI</atitle><jtitle>Cerebral circulation - cognition and behavior</jtitle><addtitle>Cereb Circ Cogn Behav</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>3</volume><spage>100142</spage><pages>100142-</pages><artnum>100142</artnum><issn>2666-2450</issn><eissn>2666-2450</eissn><abstract>•Fully automated detection of perivascular spaces on 7T MRI.•Good correlation with manual assessments of perivascular spaces.•Quantitative measurements of PVS characteristics: density, length, and tortuosity.
Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We developed a method to automatically detect and quantify PVS.
A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale (CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method.
Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the manual count, because it ignores the smallest PVS (length <2 mm). For 20 subjects manual PVS annotations of a second observer were available. Compared with the correlation between the automatic and manual PVS, higher inter-observer ICC was observed (0.85/0.88), but DSC was lower (0.49 in 4 persons). Longer PVS are observed posterior in the CSO compared with anterior in the CSO. Higher PVS tortuosity are observed in the center of the CSO compared with the periphery of the CSO.
Our fully automatic method can detect PVS in a 2D slab in the CSO, and extract quantitative PVS parameters by performing 3D tracking. This method enables automated quantitative analysis of PVS.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36324395</pmid><doi>10.1016/j.cccb.2022.100142</doi><orcidid>https://orcid.org/0000-0001-6997-9059</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-2450 |
ispartof | Cerebral circulation - cognition and behavior, 2022-01, Vol.3, p.100142, Article 100142 |
issn | 2666-2450 2666-2450 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_44fd2cf3da0c44aea0f0b0a90bd62ae5 |
source | ScienceDirect; PubMed Central Free |
subjects | 7 tesla MRI Centrum semiovale Machine learning Perivascular spaces Quantification |
title | Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20quantification%20of%20perivascular%20spaces%20in%20T2-weighted%20images%20at%207%20T%20MRI&rft.jtitle=Cerebral%20circulation%20-%20cognition%20and%20behavior&rft.au=Spijkerman,%20J.M.&rft.date=2022-01-01&rft.volume=3&rft.spage=100142&rft.pages=100142-&rft.artnum=100142&rft.issn=2666-2450&rft.eissn=2666-2450&rft_id=info:doi/10.1016/j.cccb.2022.100142&rft_dat=%3Cproquest_doaj_%3E2731721853%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-d1181d44e5ed8d9fab490afea06b94a409a30d956bc30f29bdc56f66f3f23b9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731721853&rft_id=info:pmid/36324395&rfr_iscdi=true |