Loading…
A Multi-Spatial Scale Ocean Sound Speed Prediction Method Based on Deep Learning
As sound speed is a fundamental parameter of ocean acoustic characteristics, its prediction is a central focus of underwater acoustics research. Traditional numerical and statistical forecasting methods often exhibit suboptimal performance under complex conditions, whereas deep learning approaches d...
Saved in:
Published in: | Journal of marine science and engineering 2024-11, Vol.12 (11), p.1943 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As sound speed is a fundamental parameter of ocean acoustic characteristics, its prediction is a central focus of underwater acoustics research. Traditional numerical and statistical forecasting methods often exhibit suboptimal performance under complex conditions, whereas deep learning approaches demonstrate promising results. However, these methodologies fall short in adequately addressing multi-spatial coupling effects and spatiotemporal weighting, particularly in scenarios characterized by limited data availability. To investigate the interactions across multiple spatial scales and to achieve accurate predictions, we propose the STA-ConvLSTM framework that integrates spatiotemporal attention mechanisms with convolutional long short-term memory neural networks (ConvLSTM). The core concept involves accounting for the coupling effects among various spatial scales while extracting temporal and spatial information from the data and assigning appropriate weights to different spatiotemporal entities. Furthermore, we introduce an interpolation method for ocean temperature and salinity data based on the KNN algorithm to enhance dataset resolution. Experimental results indicate that STA-ConvLSTM provides precise predictions of sound speed. Specifically, relative to the measured data, it achieved a root mean square error (RMSE) of approximately 0.57 m/s and a mean absolute error (MAE) of about 0.29 m/s. Additionally, when compared to single-dimensional spatial analysis, incorporating multi-spatial scale considerations yielded superior predictive performance. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse12111943 |