Loading…

New evidence confirming the CD genomic constitutions of the tetraploid Avena species in the section Pachycarpa Baum

The tetraploid Avena species in the section Pachycarpa Baum, including A. insularis, A. maroccana, and A. murphyi, are thought to be involved in the evolution of hexaploid oats; however, their genome designations are still being debated. Repetitive DNA sequences play an important role in genome stru...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-01, Vol.16 (1), p.e0240703
Main Authors: Yan, Honghai, Ren, Zichao, Deng, Di, Yang, Kehan, Yang, Chuang, Zhou, Pingping, Wight, Charlene P, Ren, Changzhong, Peng, Yuanying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tetraploid Avena species in the section Pachycarpa Baum, including A. insularis, A. maroccana, and A. murphyi, are thought to be involved in the evolution of hexaploid oats; however, their genome designations are still being debated. Repetitive DNA sequences play an important role in genome structuring and evolution, so understanding the chromosomal organization and distribution of these sequences in Avena species could provide valuable information concerning genome evolution in this genus. In this study, the chromosomal organizations and distributions of six repetitive DNA sequences (including three SSR motifs (TTC, AAC, CAG), one 5S rRNA gene fragment, and two oat A and C genome specific repeats) were investigated using non-denaturing fluorescence in situ hybridization (ND-FISH) in the three tetraploid species mentioned above and in two hexaploid oat species. Preferential distribution of the SSRs in centromeric regions was seen in the A and D genomes, whereas few signals were detected in the C genomes. Some intergenomic translocations were observed in the tetraploids; such translocations were also detected between the C and D genomes in the hexaploids. These results provide robust evidence for the presence of the D genome in all three tetraploids, strongly suggesting that the genomic constitution of these species is DC and not AC, as had been thought previously.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0240703