Loading…

An Optimal Path-Finding Algorithm in Smart Cities by Considering Traffic Congestion and Air Pollution

Finding the shortest and cleanest path in the cities is vital, especially in metropolises. Although several algorithms and some software have been introduced to manage the traffic or suggest a path with minimum traffic congestion, none considers air quality a deciding factor. This paper introduces a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.55126-55135
Main Authors: Ghaffari, Elham, Rahmani, Amir Masoud, Saberikamarposhti, Morteza, Sahafi, Amir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Finding the shortest and cleanest path in the cities is vital, especially in metropolises. Although several algorithms and some software have been introduced to manage the traffic or suggest a path with minimum traffic congestion, none considers air quality a deciding factor. This paper introduces a novel algorithm to find the shortest path based on traffic congestion and air quality. In the proposed algorithm, the city map is fetched from the Google Map app and is converted into a weighted graph. Traffic data is collected from GPS devices, which will be available through the local cloud services. The C-means clustering method is used to cluster traffic congestion. Also, the air quality information is collected from air pollution monitoring stations. The graph weights are calculated based on both air quality and traffic congestion factors, simultaneously. Finding the shortest path problem is then defined as an optimization problem, and the linear programming method is used to solve it. Finally, the proposed algorithm's performance is evaluated by finding the shortest path in Tehran, Iran in different scenarios.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3174598