Loading…
Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective
Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of...
Saved in:
Published in: | Frontiers in medicine 2021-02, Vol.8, p.617486-617486 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3 |
container_end_page | 617486 |
container_issue | |
container_start_page | 617486 |
container_title | Frontiers in medicine |
container_volume | 8 |
creator | Giacobbe, Daniele Roberto Signori, Alessio Del Puente, Filippo Mora, Sara Carmisciano, Luca Briano, Federica Vena, Antonio Ball, Lorenzo Robba, Chiara Pelosi, Paolo Giacomini, Mauro Bassetti, Matteo |
description | Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome. |
doi_str_mv | 10.3389/fmed.2021.617486 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_451892420c73414eb0aec0bbffa72420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_451892420c73414eb0aec0bbffa72420</doaj_id><sourcerecordid>2494883592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3</originalsourceid><addsrcrecordid>eNpVkU1PGzEQQFdVq4KAe0-Vj70k9dfa6x4q0ZQWpFQglarcrPFknBhtdlN7g8S_b5YAgtOMxjNvrHlV9UHwqVKN-xzXtJhKLsXUCKsb86Y6lNKZSVM3N29f5AfVSSm3nHOhZK2Fel8dKGW05s4eVjdnkNt79p0GwiH1Hesj-02bkgr7m4YV-wW4Sh2xOUHuUrdk14SrLv3bUvnCTtm3nCiyWZu6hNCyK8plM4Lu6Lh6F6EtdPIYj6o_P86uZ-eT-eXPi9npfILayGESIne1dI0NjtAG4Gh0RCNrYwIBgdS4CNoaQKBaRoGyJrJB1QTCokB1VF3suYsebv0mpzXke99D8g-FPi895CFhS17XonFSS45WaaEpcCDkIcQIdizvWF_3rM027I6L1A0Z2lfQ1y9dWvllf-et48bZEfDpEZD78USDX6eC1LbQUb8tXmqnm0bVTu5a-b4Vc19Kpvi8RnA_-vWjXz_69Xu_u5GPL7_3PPBkU_0Ha5ii_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494883592</pqid></control><display><type>article</type><title>Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective</title><source>PubMed Central</source><creator>Giacobbe, Daniele Roberto ; Signori, Alessio ; Del Puente, Filippo ; Mora, Sara ; Carmisciano, Luca ; Briano, Federica ; Vena, Antonio ; Ball, Lorenzo ; Robba, Chiara ; Pelosi, Paolo ; Giacomini, Mauro ; Bassetti, Matteo</creator><creatorcontrib>Giacobbe, Daniele Roberto ; Signori, Alessio ; Del Puente, Filippo ; Mora, Sara ; Carmisciano, Luca ; Briano, Federica ; Vena, Antonio ; Ball, Lorenzo ; Robba, Chiara ; Pelosi, Paolo ; Giacomini, Mauro ; Bassetti, Matteo</creatorcontrib><description>Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.</description><identifier>ISSN: 2296-858X</identifier><identifier>EISSN: 2296-858X</identifier><identifier>DOI: 10.3389/fmed.2021.617486</identifier><identifier>PMID: 33644097</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>artificial intelligence ; early diagnosis ; machine learning ; Medicine ; sepsis ; supervised learning ; unsupervised learning</subject><ispartof>Frontiers in medicine, 2021-02, Vol.8, p.617486-617486</ispartof><rights>Copyright © 2021 Giacobbe, Signori, Del Puente, Mora, Carmisciano, Briano, Vena, Ball, Robba, Pelosi, Giacomini and Bassetti.</rights><rights>Copyright © 2021 Giacobbe, Signori, Del Puente, Mora, Carmisciano, Briano, Vena, Ball, Robba, Pelosi, Giacomini and Bassetti. 2021 Giacobbe, Signori, Del Puente, Mora, Carmisciano, Briano, Vena, Ball, Robba, Pelosi, Giacomini and Bassetti</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3</citedby><cites>FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906970/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906970/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33644097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giacobbe, Daniele Roberto</creatorcontrib><creatorcontrib>Signori, Alessio</creatorcontrib><creatorcontrib>Del Puente, Filippo</creatorcontrib><creatorcontrib>Mora, Sara</creatorcontrib><creatorcontrib>Carmisciano, Luca</creatorcontrib><creatorcontrib>Briano, Federica</creatorcontrib><creatorcontrib>Vena, Antonio</creatorcontrib><creatorcontrib>Ball, Lorenzo</creatorcontrib><creatorcontrib>Robba, Chiara</creatorcontrib><creatorcontrib>Pelosi, Paolo</creatorcontrib><creatorcontrib>Giacomini, Mauro</creatorcontrib><creatorcontrib>Bassetti, Matteo</creatorcontrib><title>Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective</title><title>Frontiers in medicine</title><addtitle>Front Med (Lausanne)</addtitle><description>Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.</description><subject>artificial intelligence</subject><subject>early diagnosis</subject><subject>machine learning</subject><subject>Medicine</subject><subject>sepsis</subject><subject>supervised learning</subject><subject>unsupervised learning</subject><issn>2296-858X</issn><issn>2296-858X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1PGzEQQFdVq4KAe0-Vj70k9dfa6x4q0ZQWpFQglarcrPFknBhtdlN7g8S_b5YAgtOMxjNvrHlV9UHwqVKN-xzXtJhKLsXUCKsb86Y6lNKZSVM3N29f5AfVSSm3nHOhZK2Fel8dKGW05s4eVjdnkNt79p0GwiH1Hesj-02bkgr7m4YV-wW4Sh2xOUHuUrdk14SrLv3bUvnCTtm3nCiyWZu6hNCyK8plM4Lu6Lh6F6EtdPIYj6o_P86uZ-eT-eXPi9npfILayGESIne1dI0NjtAG4Gh0RCNrYwIBgdS4CNoaQKBaRoGyJrJB1QTCokB1VF3suYsebv0mpzXke99D8g-FPi895CFhS17XonFSS45WaaEpcCDkIcQIdizvWF_3rM027I6L1A0Z2lfQ1y9dWvllf-et48bZEfDpEZD78USDX6eC1LbQUb8tXmqnm0bVTu5a-b4Vc19Kpvi8RnA_-vWjXz_69Xu_u5GPL7_3PPBkU_0Ha5ii_A</recordid><startdate>20210212</startdate><enddate>20210212</enddate><creator>Giacobbe, Daniele Roberto</creator><creator>Signori, Alessio</creator><creator>Del Puente, Filippo</creator><creator>Mora, Sara</creator><creator>Carmisciano, Luca</creator><creator>Briano, Federica</creator><creator>Vena, Antonio</creator><creator>Ball, Lorenzo</creator><creator>Robba, Chiara</creator><creator>Pelosi, Paolo</creator><creator>Giacomini, Mauro</creator><creator>Bassetti, Matteo</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210212</creationdate><title>Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective</title><author>Giacobbe, Daniele Roberto ; Signori, Alessio ; Del Puente, Filippo ; Mora, Sara ; Carmisciano, Luca ; Briano, Federica ; Vena, Antonio ; Ball, Lorenzo ; Robba, Chiara ; Pelosi, Paolo ; Giacomini, Mauro ; Bassetti, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial intelligence</topic><topic>early diagnosis</topic><topic>machine learning</topic><topic>Medicine</topic><topic>sepsis</topic><topic>supervised learning</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacobbe, Daniele Roberto</creatorcontrib><creatorcontrib>Signori, Alessio</creatorcontrib><creatorcontrib>Del Puente, Filippo</creatorcontrib><creatorcontrib>Mora, Sara</creatorcontrib><creatorcontrib>Carmisciano, Luca</creatorcontrib><creatorcontrib>Briano, Federica</creatorcontrib><creatorcontrib>Vena, Antonio</creatorcontrib><creatorcontrib>Ball, Lorenzo</creatorcontrib><creatorcontrib>Robba, Chiara</creatorcontrib><creatorcontrib>Pelosi, Paolo</creatorcontrib><creatorcontrib>Giacomini, Mauro</creatorcontrib><creatorcontrib>Bassetti, Matteo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacobbe, Daniele Roberto</au><au>Signori, Alessio</au><au>Del Puente, Filippo</au><au>Mora, Sara</au><au>Carmisciano, Luca</au><au>Briano, Federica</au><au>Vena, Antonio</au><au>Ball, Lorenzo</au><au>Robba, Chiara</au><au>Pelosi, Paolo</au><au>Giacomini, Mauro</au><au>Bassetti, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective</atitle><jtitle>Frontiers in medicine</jtitle><addtitle>Front Med (Lausanne)</addtitle><date>2021-02-12</date><risdate>2021</risdate><volume>8</volume><spage>617486</spage><epage>617486</epage><pages>617486-617486</pages><issn>2296-858X</issn><eissn>2296-858X</eissn><abstract>Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33644097</pmid><doi>10.3389/fmed.2021.617486</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-858X |
ispartof | Frontiers in medicine, 2021-02, Vol.8, p.617486-617486 |
issn | 2296-858X 2296-858X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_451892420c73414eb0aec0bbffa72420 |
source | PubMed Central |
subjects | artificial intelligence early diagnosis machine learning Medicine sepsis supervised learning unsupervised learning |
title | Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20Detection%20of%20Sepsis%20With%20Machine%20Learning%20Techniques:%20A%20Brief%20Clinical%20Perspective&rft.jtitle=Frontiers%20in%20medicine&rft.au=Giacobbe,%20Daniele%20Roberto&rft.date=2021-02-12&rft.volume=8&rft.spage=617486&rft.epage=617486&rft.pages=617486-617486&rft.issn=2296-858X&rft.eissn=2296-858X&rft_id=info:doi/10.3389/fmed.2021.617486&rft_dat=%3Cproquest_doaj_%3E2494883592%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494883592&rft_id=info:pmid/33644097&rfr_iscdi=true |