Loading…

Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective

Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in medicine 2021-02, Vol.8, p.617486-617486
Main Authors: Giacobbe, Daniele Roberto, Signori, Alessio, Del Puente, Filippo, Mora, Sara, Carmisciano, Luca, Briano, Federica, Vena, Antonio, Ball, Lorenzo, Robba, Chiara, Pelosi, Paolo, Giacomini, Mauro, Bassetti, Matteo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3
cites cdi_FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3
container_end_page 617486
container_issue
container_start_page 617486
container_title Frontiers in medicine
container_volume 8
creator Giacobbe, Daniele Roberto
Signori, Alessio
Del Puente, Filippo
Mora, Sara
Carmisciano, Luca
Briano, Federica
Vena, Antonio
Ball, Lorenzo
Robba, Chiara
Pelosi, Paolo
Giacomini, Mauro
Bassetti, Matteo
description Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.
doi_str_mv 10.3389/fmed.2021.617486
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_451892420c73414eb0aec0bbffa72420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_451892420c73414eb0aec0bbffa72420</doaj_id><sourcerecordid>2494883592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3</originalsourceid><addsrcrecordid>eNpVkU1PGzEQQFdVq4KAe0-Vj70k9dfa6x4q0ZQWpFQglarcrPFknBhtdlN7g8S_b5YAgtOMxjNvrHlV9UHwqVKN-xzXtJhKLsXUCKsb86Y6lNKZSVM3N29f5AfVSSm3nHOhZK2Fel8dKGW05s4eVjdnkNt79p0GwiH1Hesj-02bkgr7m4YV-wW4Sh2xOUHuUrdk14SrLv3bUvnCTtm3nCiyWZu6hNCyK8plM4Lu6Lh6F6EtdPIYj6o_P86uZ-eT-eXPi9npfILayGESIne1dI0NjtAG4Gh0RCNrYwIBgdS4CNoaQKBaRoGyJrJB1QTCokB1VF3suYsebv0mpzXke99D8g-FPi895CFhS17XonFSS45WaaEpcCDkIcQIdizvWF_3rM027I6L1A0Z2lfQ1y9dWvllf-et48bZEfDpEZD78USDX6eC1LbQUb8tXmqnm0bVTu5a-b4Vc19Kpvi8RnA_-vWjXz_69Xu_u5GPL7_3PPBkU_0Ha5ii_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494883592</pqid></control><display><type>article</type><title>Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective</title><source>PubMed Central</source><creator>Giacobbe, Daniele Roberto ; Signori, Alessio ; Del Puente, Filippo ; Mora, Sara ; Carmisciano, Luca ; Briano, Federica ; Vena, Antonio ; Ball, Lorenzo ; Robba, Chiara ; Pelosi, Paolo ; Giacomini, Mauro ; Bassetti, Matteo</creator><creatorcontrib>Giacobbe, Daniele Roberto ; Signori, Alessio ; Del Puente, Filippo ; Mora, Sara ; Carmisciano, Luca ; Briano, Federica ; Vena, Antonio ; Ball, Lorenzo ; Robba, Chiara ; Pelosi, Paolo ; Giacomini, Mauro ; Bassetti, Matteo</creatorcontrib><description>Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.</description><identifier>ISSN: 2296-858X</identifier><identifier>EISSN: 2296-858X</identifier><identifier>DOI: 10.3389/fmed.2021.617486</identifier><identifier>PMID: 33644097</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>artificial intelligence ; early diagnosis ; machine learning ; Medicine ; sepsis ; supervised learning ; unsupervised learning</subject><ispartof>Frontiers in medicine, 2021-02, Vol.8, p.617486-617486</ispartof><rights>Copyright © 2021 Giacobbe, Signori, Del Puente, Mora, Carmisciano, Briano, Vena, Ball, Robba, Pelosi, Giacomini and Bassetti.</rights><rights>Copyright © 2021 Giacobbe, Signori, Del Puente, Mora, Carmisciano, Briano, Vena, Ball, Robba, Pelosi, Giacomini and Bassetti. 2021 Giacobbe, Signori, Del Puente, Mora, Carmisciano, Briano, Vena, Ball, Robba, Pelosi, Giacomini and Bassetti</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3</citedby><cites>FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906970/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906970/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33644097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giacobbe, Daniele Roberto</creatorcontrib><creatorcontrib>Signori, Alessio</creatorcontrib><creatorcontrib>Del Puente, Filippo</creatorcontrib><creatorcontrib>Mora, Sara</creatorcontrib><creatorcontrib>Carmisciano, Luca</creatorcontrib><creatorcontrib>Briano, Federica</creatorcontrib><creatorcontrib>Vena, Antonio</creatorcontrib><creatorcontrib>Ball, Lorenzo</creatorcontrib><creatorcontrib>Robba, Chiara</creatorcontrib><creatorcontrib>Pelosi, Paolo</creatorcontrib><creatorcontrib>Giacomini, Mauro</creatorcontrib><creatorcontrib>Bassetti, Matteo</creatorcontrib><title>Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective</title><title>Frontiers in medicine</title><addtitle>Front Med (Lausanne)</addtitle><description>Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.</description><subject>artificial intelligence</subject><subject>early diagnosis</subject><subject>machine learning</subject><subject>Medicine</subject><subject>sepsis</subject><subject>supervised learning</subject><subject>unsupervised learning</subject><issn>2296-858X</issn><issn>2296-858X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1PGzEQQFdVq4KAe0-Vj70k9dfa6x4q0ZQWpFQglarcrPFknBhtdlN7g8S_b5YAgtOMxjNvrHlV9UHwqVKN-xzXtJhKLsXUCKsb86Y6lNKZSVM3N29f5AfVSSm3nHOhZK2Fel8dKGW05s4eVjdnkNt79p0GwiH1Hesj-02bkgr7m4YV-wW4Sh2xOUHuUrdk14SrLv3bUvnCTtm3nCiyWZu6hNCyK8plM4Lu6Lh6F6EtdPIYj6o_P86uZ-eT-eXPi9npfILayGESIne1dI0NjtAG4Gh0RCNrYwIBgdS4CNoaQKBaRoGyJrJB1QTCokB1VF3suYsebv0mpzXke99D8g-FPi895CFhS17XonFSS45WaaEpcCDkIcQIdizvWF_3rM027I6L1A0Z2lfQ1y9dWvllf-et48bZEfDpEZD78USDX6eC1LbQUb8tXmqnm0bVTu5a-b4Vc19Kpvi8RnA_-vWjXz_69Xu_u5GPL7_3PPBkU_0Ha5ii_A</recordid><startdate>20210212</startdate><enddate>20210212</enddate><creator>Giacobbe, Daniele Roberto</creator><creator>Signori, Alessio</creator><creator>Del Puente, Filippo</creator><creator>Mora, Sara</creator><creator>Carmisciano, Luca</creator><creator>Briano, Federica</creator><creator>Vena, Antonio</creator><creator>Ball, Lorenzo</creator><creator>Robba, Chiara</creator><creator>Pelosi, Paolo</creator><creator>Giacomini, Mauro</creator><creator>Bassetti, Matteo</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210212</creationdate><title>Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective</title><author>Giacobbe, Daniele Roberto ; Signori, Alessio ; Del Puente, Filippo ; Mora, Sara ; Carmisciano, Luca ; Briano, Federica ; Vena, Antonio ; Ball, Lorenzo ; Robba, Chiara ; Pelosi, Paolo ; Giacomini, Mauro ; Bassetti, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial intelligence</topic><topic>early diagnosis</topic><topic>machine learning</topic><topic>Medicine</topic><topic>sepsis</topic><topic>supervised learning</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacobbe, Daniele Roberto</creatorcontrib><creatorcontrib>Signori, Alessio</creatorcontrib><creatorcontrib>Del Puente, Filippo</creatorcontrib><creatorcontrib>Mora, Sara</creatorcontrib><creatorcontrib>Carmisciano, Luca</creatorcontrib><creatorcontrib>Briano, Federica</creatorcontrib><creatorcontrib>Vena, Antonio</creatorcontrib><creatorcontrib>Ball, Lorenzo</creatorcontrib><creatorcontrib>Robba, Chiara</creatorcontrib><creatorcontrib>Pelosi, Paolo</creatorcontrib><creatorcontrib>Giacomini, Mauro</creatorcontrib><creatorcontrib>Bassetti, Matteo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacobbe, Daniele Roberto</au><au>Signori, Alessio</au><au>Del Puente, Filippo</au><au>Mora, Sara</au><au>Carmisciano, Luca</au><au>Briano, Federica</au><au>Vena, Antonio</au><au>Ball, Lorenzo</au><au>Robba, Chiara</au><au>Pelosi, Paolo</au><au>Giacomini, Mauro</au><au>Bassetti, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective</atitle><jtitle>Frontiers in medicine</jtitle><addtitle>Front Med (Lausanne)</addtitle><date>2021-02-12</date><risdate>2021</risdate><volume>8</volume><spage>617486</spage><epage>617486</epage><pages>617486-617486</pages><issn>2296-858X</issn><eissn>2296-858X</eissn><abstract>Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33644097</pmid><doi>10.3389/fmed.2021.617486</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-858X
ispartof Frontiers in medicine, 2021-02, Vol.8, p.617486-617486
issn 2296-858X
2296-858X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_451892420c73414eb0aec0bbffa72420
source PubMed Central
subjects artificial intelligence
early diagnosis
machine learning
Medicine
sepsis
supervised learning
unsupervised learning
title Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20Detection%20of%20Sepsis%20With%20Machine%20Learning%20Techniques:%20A%20Brief%20Clinical%20Perspective&rft.jtitle=Frontiers%20in%20medicine&rft.au=Giacobbe,%20Daniele%20Roberto&rft.date=2021-02-12&rft.volume=8&rft.spage=617486&rft.epage=617486&rft.pages=617486-617486&rft.issn=2296-858X&rft.eissn=2296-858X&rft_id=info:doi/10.3389/fmed.2021.617486&rft_dat=%3Cproquest_doaj_%3E2494883592%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-bf0952987b9ec7ba0c64fc62566beaea24cdb476acae52f1c25ee7b35ea17c1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494883592&rft_id=info:pmid/33644097&rfr_iscdi=true