Loading…

Construction of L-equienergetic graphs using some graph operations

For a graph G with n vertices and m edges, the eigenvalues of its adjacency matrix A(G) are known as eigenvalues of G. The sum of absolute values of eigenvalues of G is called the energy of G. The Laplacian matrix of G is defined as where D(G) is the diagonal matrix with entry is the degree of verte...

Full description

Saved in:
Bibliographic Details
Published in:AKCE international journal of graphs and combinatorics 2020-09, Vol.ahead-of-print (ahead-of-print), p.1-6
Main Authors: Vaidya, S. K., Popat, Kalpesh M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-425318250d2c414ff7abd2f0077572bb52680ef1ecc330a7742005ceda18d9423
container_end_page 6
container_issue ahead-of-print
container_start_page 1
container_title AKCE international journal of graphs and combinatorics
container_volume ahead-of-print
creator Vaidya, S. K.
Popat, Kalpesh M.
description For a graph G with n vertices and m edges, the eigenvalues of its adjacency matrix A(G) are known as eigenvalues of G. The sum of absolute values of eigenvalues of G is called the energy of G. The Laplacian matrix of G is defined as where D(G) is the diagonal matrix with entry is the degree of vertex v i . The collection of eigenvalues of L(G) with their multiplicities is called spectra of L(G). If are the eigenvalues of L(G) then the Laplacian energy LE(G) of G is defined as It is always interesting and challenging as well to investigate the graphs which are L-equienergetic but L-noncopectral as L-cospectral graphs are obviously L-equienergetic. We have devised a method to construct L-equienergetic graphs which are L-noncospectral.
doi_str_mv 10.1016/j.akcej.2019.06.012
format article
fullrecord <record><control><sourceid>doaj_infor</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4530a69a21e84501948cd7865ca88d89</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4530a69a21e84501948cd7865ca88d89</doaj_id><sourcerecordid>oai_doaj_org_article_4530a69a21e84501948cd7865ca88d89</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-425318250d2c414ff7abd2f0077572bb52680ef1ecc330a7742005ceda18d9423</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWLRP4GZeYMab_8xG0OJPoeBG1yGTScbU6aQmU6Rv77QVl64ufHAOl4PQDYYKAxa368p8WreuCOC6AlEBJmdoRjijJWWSnaMZ1JKUSgBconnOoQEsqSI1ETP0sIhDHtPOjiEORfTFqnRfu-AGlzo3Blt0yWw_crHLYeiKHDfutBRx65I5QPkaXXjTZzf_vVfo_enxbfFSrl6fl4v7VWmp4GPJCKdYEQ4tsQwz76VpWuIBpOSSNA0nQoHz2FlLKRgpGQHg1rUGq7ZmhF6h5cnbRrPW2xQ2Ju11NEEfh5g6bdL0cu8045NB1IZgpxifujBlW6kEt0apVtWTi55cNsWck_N_Pgz6UFWv9bGqPlTVIPRUdaLuTlQYfEwb8x1T3-rR7PuYfDKDDVnT_wQ_EX-AeQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of L-equienergetic graphs using some graph operations</title><source>Taylor &amp; Francis Open Access</source><creator>Vaidya, S. K. ; Popat, Kalpesh M.</creator><creatorcontrib>Vaidya, S. K. ; Popat, Kalpesh M.</creatorcontrib><description>For a graph G with n vertices and m edges, the eigenvalues of its adjacency matrix A(G) are known as eigenvalues of G. The sum of absolute values of eigenvalues of G is called the energy of G. The Laplacian matrix of G is defined as where D(G) is the diagonal matrix with entry is the degree of vertex v i . The collection of eigenvalues of L(G) with their multiplicities is called spectra of L(G). If are the eigenvalues of L(G) then the Laplacian energy LE(G) of G is defined as It is always interesting and challenging as well to investigate the graphs which are L-equienergetic but L-noncopectral as L-cospectral graphs are obviously L-equienergetic. We have devised a method to construct L-equienergetic graphs which are L-noncospectral.</description><identifier>ISSN: 0972-8600</identifier><identifier>EISSN: 2543-3474</identifier><identifier>DOI: 10.1016/j.akcej.2019.06.012</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Eigenvalue ; equienergetic ; graph energy ; spectrum</subject><ispartof>AKCE international journal of graphs and combinatorics, 2020-09, Vol.ahead-of-print (ahead-of-print), p.1-6</ispartof><rights>2020 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-425318250d2c414ff7abd2f0077572bb52680ef1ecc330a7742005ceda18d9423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1016/j.akcej.2019.06.012$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1016/j.akcej.2019.06.012$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Vaidya, S. K.</creatorcontrib><creatorcontrib>Popat, Kalpesh M.</creatorcontrib><title>Construction of L-equienergetic graphs using some graph operations</title><title>AKCE international journal of graphs and combinatorics</title><description>For a graph G with n vertices and m edges, the eigenvalues of its adjacency matrix A(G) are known as eigenvalues of G. The sum of absolute values of eigenvalues of G is called the energy of G. The Laplacian matrix of G is defined as where D(G) is the diagonal matrix with entry is the degree of vertex v i . The collection of eigenvalues of L(G) with their multiplicities is called spectra of L(G). If are the eigenvalues of L(G) then the Laplacian energy LE(G) of G is defined as It is always interesting and challenging as well to investigate the graphs which are L-equienergetic but L-noncopectral as L-cospectral graphs are obviously L-equienergetic. We have devised a method to construct L-equienergetic graphs which are L-noncospectral.</description><subject>Eigenvalue</subject><subject>equienergetic</subject><subject>graph energy</subject><subject>spectrum</subject><issn>0972-8600</issn><issn>2543-3474</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kM1KAzEURoMoWLRP4GZeYMab_8xG0OJPoeBG1yGTScbU6aQmU6Rv77QVl64ufHAOl4PQDYYKAxa368p8WreuCOC6AlEBJmdoRjijJWWSnaMZ1JKUSgBconnOoQEsqSI1ETP0sIhDHtPOjiEORfTFqnRfu-AGlzo3Blt0yWw_crHLYeiKHDfutBRx65I5QPkaXXjTZzf_vVfo_enxbfFSrl6fl4v7VWmp4GPJCKdYEQ4tsQwz76VpWuIBpOSSNA0nQoHz2FlLKRgpGQHg1rUGq7ZmhF6h5cnbRrPW2xQ2Ju11NEEfh5g6bdL0cu8045NB1IZgpxifujBlW6kEt0apVtWTi55cNsWck_N_Pgz6UFWv9bGqPlTVIPRUdaLuTlQYfEwb8x1T3-rR7PuYfDKDDVnT_wQ_EX-AeQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Vaidya, S. K.</creator><creator>Popat, Kalpesh M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200901</creationdate><title>Construction of L-equienergetic graphs using some graph operations</title><author>Vaidya, S. K. ; Popat, Kalpesh M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-425318250d2c414ff7abd2f0077572bb52680ef1ecc330a7742005ceda18d9423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Eigenvalue</topic><topic>equienergetic</topic><topic>graph energy</topic><topic>spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaidya, S. K.</creatorcontrib><creatorcontrib>Popat, Kalpesh M.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AKCE international journal of graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaidya, S. K.</au><au>Popat, Kalpesh M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of L-equienergetic graphs using some graph operations</atitle><jtitle>AKCE international journal of graphs and combinatorics</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>ahead-of-print</volume><issue>ahead-of-print</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0972-8600</issn><eissn>2543-3474</eissn><abstract>For a graph G with n vertices and m edges, the eigenvalues of its adjacency matrix A(G) are known as eigenvalues of G. The sum of absolute values of eigenvalues of G is called the energy of G. The Laplacian matrix of G is defined as where D(G) is the diagonal matrix with entry is the degree of vertex v i . The collection of eigenvalues of L(G) with their multiplicities is called spectra of L(G). If are the eigenvalues of L(G) then the Laplacian energy LE(G) of G is defined as It is always interesting and challenging as well to investigate the graphs which are L-equienergetic but L-noncopectral as L-cospectral graphs are obviously L-equienergetic. We have devised a method to construct L-equienergetic graphs which are L-noncospectral.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1016/j.akcej.2019.06.012</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0972-8600
ispartof AKCE international journal of graphs and combinatorics, 2020-09, Vol.ahead-of-print (ahead-of-print), p.1-6
issn 0972-8600
2543-3474
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4530a69a21e84501948cd7865ca88d89
source Taylor & Francis Open Access
subjects Eigenvalue
equienergetic
graph energy
spectrum
title Construction of L-equienergetic graphs using some graph operations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20L-equienergetic%20graphs%20using%20some%20graph%20operations&rft.jtitle=AKCE%20international%20journal%20of%20graphs%20and%20combinatorics&rft.au=Vaidya,%20S.%20K.&rft.date=2020-09-01&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0972-8600&rft.eissn=2543-3474&rft_id=info:doi/10.1016/j.akcej.2019.06.012&rft_dat=%3Cdoaj_infor%3Eoai_doaj_org_article_4530a69a21e84501948cd7865ca88d89%3C/doaj_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-425318250d2c414ff7abd2f0077572bb52680ef1ecc330a7742005ceda18d9423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true