Loading…

Study of the Structural, Optical and Strength Properties of Glass-like (1−x)ZnO–0.25Al2O3–0.25WO3–xBi2O3 Ceramics

The main purpose of this work is to study the effect of substitution of zinc oxide for bismuth oxide in the composition of (1−x)ZnO–0.25Al2O3–0.25WO3–xBi2O3 ceramics, as well as the accompanying processes of phase transformations and their influence on the optical and strength properties of ceramics...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2022-11, Vol.12 (11), p.1527
Main Authors: Kozlovskiy, Artem L., Seitbayev, Aibek S., Borgekov, Daryn B., Zdorovets, Maxim V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main purpose of this work is to study the effect of substitution of zinc oxide for bismuth oxide in the composition of (1−x)ZnO–0.25Al2O3–0.25WO3–xBi2O3 ceramics, as well as the accompanying processes of phase transformations and their influence on the optical and strength properties of ceramics. The use of these oxide compounds as materials for creating shielding coatings or ceramics is due to the combination of their structural, optical, and strength properties, which make it possible to compete with traditional protective glasses based on rare earth oxide compounds. Interest in these types of ceramics is due to their potential for use as basic materials for shielding ionizing radiation as well as for use as radiation-resistant coatings. The main research methods were X-ray diffractometry to determine the phase composition of ceramics; scanning electron microscopy and energy dispersive analysis to determine the morphological features and isotropy of the distribution of elements in the structure; and UV-V is spectroscopy to determine the optical properties of ceramics. During the studies, it was found that an increase in the Bi2O3 concentration leads to the formation of new phase inclusions in the form of orthorhombic Bi2WO6 and Bi2W2O9 phases, the appearance of which leads to an increase in the density of ceramics and a change in the dislocation density. An analysis of the strength properties, in particular, hardness and crack resistance, showed that a change in the phase composition of ceramics with an increase in the Bi2O3 concentration leads to a significant strengthening of the ceramics, which is due to the effect of the presence of interfacial boundaries as well as an increase in the dislocation density.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst12111527