Loading…

Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery

Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced robotic systems 2015-05, Vol.12 (5)
Main Authors: Beretta, Elisa, De Momi, Elena, Rodriguez y Baena, Ferdinando, Ferrigno, Giancarlo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3
cites cdi_FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3
container_end_page
container_issue 5
container_start_page
container_title International journal of advanced robotic systems
container_volume 12
creator Beretta, Elisa
De Momi, Elena
Rodriguez y Baena, Ferdinando
Ferrigno, Giancarlo
description Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical site, is proposed to enhance the physical human-robot interaction experience. The performance of this and of typical constant damping controllers is comparatively assessed using a redundant light-weight robot. Results show that it combines the positive features of both null (acceleration capabilities > 0.8m/s2) and optimal (mean pointing error < 1.5mm) constant damping controllers, coupled with smooth and intuitive convergence to the target (direction changes reduced by 30%), which ensures that assisted tool trajectories feel natural to the user. An application scenario is proposed for brain cortex stimulation procedures, where the surgeon's intentions of motion are explicitly defined intra-operatively through an image-guided navigational system.
doi_str_mv 10.5772/60130
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_454c5d5d3de34614938952a2877c3e97</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.5772_60130</sage_id><doaj_id>oai_doaj_org_article_454c5d5d3de34614938952a2877c3e97</doaj_id><sourcerecordid>1864582207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3</originalsourceid><addsrcrecordid>eNpdkdtKw0AQhoMoWGrfISiCN9E97-aylGoLhYLmftnuIaam2bqbCn17k0YqOjdz-vj5h0mSCQSPlHP0xADE4CIZQY7yTAhILs81YNfJJMYt6IMDmvNRMp8atW-rL5suVGNitm7SmW_a4OvU-ZC-WqXfq6ZMu2VaqFDatu8KFT9iWjXp26EbheNNcuVUHe3kJ4-T4nlezBbZav2ynE1XmaYQtJmCDHBsBSAbwTZc2A1z0DBniQaIOUOpxhA6hgExAiGXY0eVodrBnHLj8DhZDrLGq63ch2qnwlF6VcnTwIdSqtBWuraSUKKpoQYbiwmDJMcip0ghwbnGNued1sOgtQ_-82BjK3dV1LauVWP9IUooGKGdCdCjd__QrT-EpjtUIowoEpgI0FH3A6WDjzFYdzYIgexfI0-v6bjbgYuqtL9Kf6FvDVqG4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325283480</pqid></control><display><type>article</type><title>Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery</title><source>SAGE Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Beretta, Elisa ; De Momi, Elena ; Rodriguez y Baena, Ferdinando ; Ferrigno, Giancarlo</creator><creatorcontrib>Beretta, Elisa ; De Momi, Elena ; Rodriguez y Baena, Ferdinando ; Ferrigno, Giancarlo</creatorcontrib><description>Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical site, is proposed to enhance the physical human-robot interaction experience. The performance of this and of typical constant damping controllers is comparatively assessed using a redundant light-weight robot. Results show that it combines the positive features of both null (acceleration capabilities &gt; 0.8m/s2) and optimal (mean pointing error &lt; 1.5mm) constant damping controllers, coupled with smooth and intuitive convergence to the target (direction changes reduced by 30%), which ensures that assisted tool trajectories feel natural to the user. An application scenario is proposed for brain cortex stimulation procedures, where the surgeon's intentions of motion are explicitly defined intra-operatively through an image-guided navigational system.</description><identifier>ISSN: 1729-8806</identifier><identifier>EISSN: 1729-8814</identifier><identifier>DOI: 10.5772/60130</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acceleration ; Accuracy ; Adaptive control ; Constants ; Controllers ; Cooperation ; Damping ; Human engineering ; Human performance ; Neurosurgery ; Performance evaluation ; Robotic surgery ; Robotics ; Robots ; Surgery ; Tasks ; Trajectories ; Weight reduction</subject><ispartof>International journal of advanced robotic systems, 2015-05, Vol.12 (5)</ispartof><rights>2015 The Author(s). Licensee InTech.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3</citedby><cites>FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.5772/60130$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2325283480?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21945,25731,27830,27901,27902,36989,36990,44566,44921,45309</link.rule.ids></links><search><creatorcontrib>Beretta, Elisa</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><creatorcontrib>Rodriguez y Baena, Ferdinando</creatorcontrib><creatorcontrib>Ferrigno, Giancarlo</creatorcontrib><title>Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery</title><title>International journal of advanced robotic systems</title><description>Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical site, is proposed to enhance the physical human-robot interaction experience. The performance of this and of typical constant damping controllers is comparatively assessed using a redundant light-weight robot. Results show that it combines the positive features of both null (acceleration capabilities &gt; 0.8m/s2) and optimal (mean pointing error &lt; 1.5mm) constant damping controllers, coupled with smooth and intuitive convergence to the target (direction changes reduced by 30%), which ensures that assisted tool trajectories feel natural to the user. An application scenario is proposed for brain cortex stimulation procedures, where the surgeon's intentions of motion are explicitly defined intra-operatively through an image-guided navigational system.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Adaptive control</subject><subject>Constants</subject><subject>Controllers</subject><subject>Cooperation</subject><subject>Damping</subject><subject>Human engineering</subject><subject>Human performance</subject><subject>Neurosurgery</subject><subject>Performance evaluation</subject><subject>Robotic surgery</subject><subject>Robotics</subject><subject>Robots</subject><subject>Surgery</subject><subject>Tasks</subject><subject>Trajectories</subject><subject>Weight reduction</subject><issn>1729-8806</issn><issn>1729-8814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdtKw0AQhoMoWGrfISiCN9E97-aylGoLhYLmftnuIaam2bqbCn17k0YqOjdz-vj5h0mSCQSPlHP0xADE4CIZQY7yTAhILs81YNfJJMYt6IMDmvNRMp8atW-rL5suVGNitm7SmW_a4OvU-ZC-WqXfq6ZMu2VaqFDatu8KFT9iWjXp26EbheNNcuVUHe3kJ4-T4nlezBbZav2ynE1XmaYQtJmCDHBsBSAbwTZc2A1z0DBniQaIOUOpxhA6hgExAiGXY0eVodrBnHLj8DhZDrLGq63ch2qnwlF6VcnTwIdSqtBWuraSUKKpoQYbiwmDJMcip0ghwbnGNued1sOgtQ_-82BjK3dV1LauVWP9IUooGKGdCdCjd__QrT-EpjtUIowoEpgI0FH3A6WDjzFYdzYIgexfI0-v6bjbgYuqtL9Kf6FvDVqG4Q</recordid><startdate>20150506</startdate><enddate>20150506</enddate><creator>Beretta, Elisa</creator><creator>De Momi, Elena</creator><creator>Rodriguez y Baena, Ferdinando</creator><creator>Ferrigno, Giancarlo</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20150506</creationdate><title>Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery</title><author>Beretta, Elisa ; De Momi, Elena ; Rodriguez y Baena, Ferdinando ; Ferrigno, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Adaptive control</topic><topic>Constants</topic><topic>Controllers</topic><topic>Cooperation</topic><topic>Damping</topic><topic>Human engineering</topic><topic>Human performance</topic><topic>Neurosurgery</topic><topic>Performance evaluation</topic><topic>Robotic surgery</topic><topic>Robotics</topic><topic>Robots</topic><topic>Surgery</topic><topic>Tasks</topic><topic>Trajectories</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beretta, Elisa</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><creatorcontrib>Rodriguez y Baena, Ferdinando</creatorcontrib><creatorcontrib>Ferrigno, Giancarlo</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of advanced robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beretta, Elisa</au><au>De Momi, Elena</au><au>Rodriguez y Baena, Ferdinando</au><au>Ferrigno, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery</atitle><jtitle>International journal of advanced robotic systems</jtitle><date>2015-05-06</date><risdate>2015</risdate><volume>12</volume><issue>5</issue><issn>1729-8806</issn><eissn>1729-8814</eissn><abstract>Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical site, is proposed to enhance the physical human-robot interaction experience. The performance of this and of typical constant damping controllers is comparatively assessed using a redundant light-weight robot. Results show that it combines the positive features of both null (acceleration capabilities &gt; 0.8m/s2) and optimal (mean pointing error &lt; 1.5mm) constant damping controllers, coupled with smooth and intuitive convergence to the target (direction changes reduced by 30%), which ensures that assisted tool trajectories feel natural to the user. An application scenario is proposed for brain cortex stimulation procedures, where the surgeon's intentions of motion are explicitly defined intra-operatively through an image-guided navigational system.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.5772/60130</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1729-8806
ispartof International journal of advanced robotic systems, 2015-05, Vol.12 (5)
issn 1729-8806
1729-8814
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_454c5d5d3de34614938952a2877c3e97
source SAGE Open Access; Publicly Available Content (ProQuest)
subjects Acceleration
Accuracy
Adaptive control
Constants
Controllers
Cooperation
Damping
Human engineering
Human performance
Neurosurgery
Performance evaluation
Robotic surgery
Robotics
Robots
Surgery
Tasks
Trajectories
Weight reduction
title Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Hands-On%20Control%20for%20Reaching%20and%20Targeting%20Tasks%20in%20Surgery&rft.jtitle=International%20journal%20of%20advanced%20robotic%20systems&rft.au=Beretta,%20Elisa&rft.date=2015-05-06&rft.volume=12&rft.issue=5&rft.issn=1729-8806&rft.eissn=1729-8814&rft_id=info:doi/10.5772/60130&rft_dat=%3Cproquest_doaj_%3E1864582207%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325283480&rft_id=info:pmid/&rft_sage_id=10.5772_60130&rfr_iscdi=true