Loading…
Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery
Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical...
Saved in:
Published in: | International journal of advanced robotic systems 2015-05, Vol.12 (5) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | International journal of advanced robotic systems |
container_volume | 12 |
creator | Beretta, Elisa De Momi, Elena Rodriguez y Baena, Ferdinando Ferrigno, Giancarlo |
description | Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical site, is proposed to enhance the physical human-robot interaction experience. The performance of this and of typical constant damping controllers is comparatively assessed using a redundant light-weight robot. Results show that it combines the positive features of both null (acceleration capabilities > 0.8m/s2) and optimal (mean pointing error < 1.5mm) constant damping controllers, coupled with smooth and intuitive convergence to the target (direction changes reduced by 30%), which ensures that assisted tool trajectories feel natural to the user. An application scenario is proposed for brain cortex stimulation procedures, where the surgeon's intentions of motion are explicitly defined intra-operatively through an image-guided navigational system. |
doi_str_mv | 10.5772/60130 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_454c5d5d3de34614938952a2877c3e97</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.5772_60130</sage_id><doaj_id>oai_doaj_org_article_454c5d5d3de34614938952a2877c3e97</doaj_id><sourcerecordid>1864582207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3</originalsourceid><addsrcrecordid>eNpdkdtKw0AQhoMoWGrfISiCN9E97-aylGoLhYLmftnuIaam2bqbCn17k0YqOjdz-vj5h0mSCQSPlHP0xADE4CIZQY7yTAhILs81YNfJJMYt6IMDmvNRMp8atW-rL5suVGNitm7SmW_a4OvU-ZC-WqXfq6ZMu2VaqFDatu8KFT9iWjXp26EbheNNcuVUHe3kJ4-T4nlezBbZav2ynE1XmaYQtJmCDHBsBSAbwTZc2A1z0DBniQaIOUOpxhA6hgExAiGXY0eVodrBnHLj8DhZDrLGq63ch2qnwlF6VcnTwIdSqtBWuraSUKKpoQYbiwmDJMcip0ghwbnGNued1sOgtQ_-82BjK3dV1LauVWP9IUooGKGdCdCjd__QrT-EpjtUIowoEpgI0FH3A6WDjzFYdzYIgexfI0-v6bjbgYuqtL9Kf6FvDVqG4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325283480</pqid></control><display><type>article</type><title>Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery</title><source>SAGE Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Beretta, Elisa ; De Momi, Elena ; Rodriguez y Baena, Ferdinando ; Ferrigno, Giancarlo</creator><creatorcontrib>Beretta, Elisa ; De Momi, Elena ; Rodriguez y Baena, Ferdinando ; Ferrigno, Giancarlo</creatorcontrib><description>Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical site, is proposed to enhance the physical human-robot interaction experience. The performance of this and of typical constant damping controllers is comparatively assessed using a redundant light-weight robot. Results show that it combines the positive features of both null (acceleration capabilities > 0.8m/s2) and optimal (mean pointing error < 1.5mm) constant damping controllers, coupled with smooth and intuitive convergence to the target (direction changes reduced by 30%), which ensures that assisted tool trajectories feel natural to the user. An application scenario is proposed for brain cortex stimulation procedures, where the surgeon's intentions of motion are explicitly defined intra-operatively through an image-guided navigational system.</description><identifier>ISSN: 1729-8806</identifier><identifier>EISSN: 1729-8814</identifier><identifier>DOI: 10.5772/60130</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acceleration ; Accuracy ; Adaptive control ; Constants ; Controllers ; Cooperation ; Damping ; Human engineering ; Human performance ; Neurosurgery ; Performance evaluation ; Robotic surgery ; Robotics ; Robots ; Surgery ; Tasks ; Trajectories ; Weight reduction</subject><ispartof>International journal of advanced robotic systems, 2015-05, Vol.12 (5)</ispartof><rights>2015 The Author(s). Licensee InTech.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3</citedby><cites>FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.5772/60130$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2325283480?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21945,25731,27830,27901,27902,36989,36990,44566,44921,45309</link.rule.ids></links><search><creatorcontrib>Beretta, Elisa</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><creatorcontrib>Rodriguez y Baena, Ferdinando</creatorcontrib><creatorcontrib>Ferrigno, Giancarlo</creatorcontrib><title>Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery</title><title>International journal of advanced robotic systems</title><description>Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical site, is proposed to enhance the physical human-robot interaction experience. The performance of this and of typical constant damping controllers is comparatively assessed using a redundant light-weight robot. Results show that it combines the positive features of both null (acceleration capabilities > 0.8m/s2) and optimal (mean pointing error < 1.5mm) constant damping controllers, coupled with smooth and intuitive convergence to the target (direction changes reduced by 30%), which ensures that assisted tool trajectories feel natural to the user. An application scenario is proposed for brain cortex stimulation procedures, where the surgeon's intentions of motion are explicitly defined intra-operatively through an image-guided navigational system.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Adaptive control</subject><subject>Constants</subject><subject>Controllers</subject><subject>Cooperation</subject><subject>Damping</subject><subject>Human engineering</subject><subject>Human performance</subject><subject>Neurosurgery</subject><subject>Performance evaluation</subject><subject>Robotic surgery</subject><subject>Robotics</subject><subject>Robots</subject><subject>Surgery</subject><subject>Tasks</subject><subject>Trajectories</subject><subject>Weight reduction</subject><issn>1729-8806</issn><issn>1729-8814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdtKw0AQhoMoWGrfISiCN9E97-aylGoLhYLmftnuIaam2bqbCn17k0YqOjdz-vj5h0mSCQSPlHP0xADE4CIZQY7yTAhILs81YNfJJMYt6IMDmvNRMp8atW-rL5suVGNitm7SmW_a4OvU-ZC-WqXfq6ZMu2VaqFDatu8KFT9iWjXp26EbheNNcuVUHe3kJ4-T4nlezBbZav2ynE1XmaYQtJmCDHBsBSAbwTZc2A1z0DBniQaIOUOpxhA6hgExAiGXY0eVodrBnHLj8DhZDrLGq63ch2qnwlF6VcnTwIdSqtBWuraSUKKpoQYbiwmDJMcip0ghwbnGNued1sOgtQ_-82BjK3dV1LauVWP9IUooGKGdCdCjd__QrT-EpjtUIowoEpgI0FH3A6WDjzFYdzYIgexfI0-v6bjbgYuqtL9Kf6FvDVqG4Q</recordid><startdate>20150506</startdate><enddate>20150506</enddate><creator>Beretta, Elisa</creator><creator>De Momi, Elena</creator><creator>Rodriguez y Baena, Ferdinando</creator><creator>Ferrigno, Giancarlo</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20150506</creationdate><title>Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery</title><author>Beretta, Elisa ; De Momi, Elena ; Rodriguez y Baena, Ferdinando ; Ferrigno, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Adaptive control</topic><topic>Constants</topic><topic>Controllers</topic><topic>Cooperation</topic><topic>Damping</topic><topic>Human engineering</topic><topic>Human performance</topic><topic>Neurosurgery</topic><topic>Performance evaluation</topic><topic>Robotic surgery</topic><topic>Robotics</topic><topic>Robots</topic><topic>Surgery</topic><topic>Tasks</topic><topic>Trajectories</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beretta, Elisa</creatorcontrib><creatorcontrib>De Momi, Elena</creatorcontrib><creatorcontrib>Rodriguez y Baena, Ferdinando</creatorcontrib><creatorcontrib>Ferrigno, Giancarlo</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of advanced robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beretta, Elisa</au><au>De Momi, Elena</au><au>Rodriguez y Baena, Ferdinando</au><au>Ferrigno, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery</atitle><jtitle>International journal of advanced robotic systems</jtitle><date>2015-05-06</date><risdate>2015</risdate><volume>12</volume><issue>5</issue><issn>1729-8806</issn><eissn>1729-8814</eissn><abstract>Cooperatively controlled robotic assistants can be used in surgery for the repetitive execution of targeting/reaching tasks, which require smooth motions and accurate placement of a tool inside a working area. A variable damping controller, based on a priori knowledge of the location of the surgical site, is proposed to enhance the physical human-robot interaction experience. The performance of this and of typical constant damping controllers is comparatively assessed using a redundant light-weight robot. Results show that it combines the positive features of both null (acceleration capabilities > 0.8m/s2) and optimal (mean pointing error < 1.5mm) constant damping controllers, coupled with smooth and intuitive convergence to the target (direction changes reduced by 30%), which ensures that assisted tool trajectories feel natural to the user. An application scenario is proposed for brain cortex stimulation procedures, where the surgeon's intentions of motion are explicitly defined intra-operatively through an image-guided navigational system.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.5772/60130</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1729-8806 |
ispartof | International journal of advanced robotic systems, 2015-05, Vol.12 (5) |
issn | 1729-8806 1729-8814 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_454c5d5d3de34614938952a2877c3e97 |
source | SAGE Open Access; Publicly Available Content (ProQuest) |
subjects | Acceleration Accuracy Adaptive control Constants Controllers Cooperation Damping Human engineering Human performance Neurosurgery Performance evaluation Robotic surgery Robotics Robots Surgery Tasks Trajectories Weight reduction |
title | Adaptive Hands-On Control for Reaching and Targeting Tasks in Surgery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Hands-On%20Control%20for%20Reaching%20and%20Targeting%20Tasks%20in%20Surgery&rft.jtitle=International%20journal%20of%20advanced%20robotic%20systems&rft.au=Beretta,%20Elisa&rft.date=2015-05-06&rft.volume=12&rft.issue=5&rft.issn=1729-8806&rft.eissn=1729-8814&rft_id=info:doi/10.5772/60130&rft_dat=%3Cproquest_doaj_%3E1864582207%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-a16073e804b86b78eb6f1d6fe4c026fd55c311f6304d822f93f5ad5cf1957df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325283480&rft_id=info:pmid/&rft_sage_id=10.5772_60130&rfr_iscdi=true |