Loading…

Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches

Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificia...

Full description

Saved in:
Bibliographic Details
Published in:Energy science & engineering 2022-06, Vol.10 (6), p.1925-1939
Main Authors: Karimi, Mohsen, Khosravi, Marzieh, Fathollahi, Reza, Khandakar, Amith, Vaferi, Behzad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043
cites cdi_FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043
container_end_page 1939
container_issue 6
container_start_page 1925
container_title Energy science & engineering
container_volume 10
creator Karimi, Mohsen
Khosravi, Marzieh
Fathollahi, Reza
Khandakar, Amith
Vaferi, Behzad
description Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation. Research highlights Heat capacity of the cellulosic biosamples with different origins is simulated. Seven different intelligent estimators have been utilized for the modeling stage. Least‐squares support vector regression shows the most accurate predictions. This approach has the overall absolute average relative deviation (AARD) = 0.32%, mean square errors (MSE) = 1.88 × 10−3, and R2 = 0.999991. The amorphous cellulosic biosample has the highest average heat capacity.
doi_str_mv 10.1002/ese3.1155
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_454c5d6f2eb64a0181b28782ae5efaf1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_454c5d6f2eb64a0181b28782ae5efaf1</doaj_id><sourcerecordid>2674670008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043</originalsourceid><addsrcrecordid>eNp1kU9LAzEQxRdRUNSD3yDgyUNt_m53j6JVC4IH9Rwm2YlN2W7WZKv025ttRbx4CBPe_PKSySuKC0avGaV8ignFNWNKHRQnnCo6yUsd_tkfF-cprSilTDJZU3ZS-DscMK59B4MPHQmODEskS4SBWOjB-mE7ihbbdtOG5C0xPiRY9y0mgrmEre_eSeM_MSYka7BL3yFpEWI3NqDvY8giprPiyEGb8PynnhZv9_PX28fJ0_PD4vbmaWJFXamJQetKBjUXZU2hMsbWWUHLK6iVQMGpkU3lGJPS1MIIaIyTjVQMa9EIKsVpsdj7NgFWuo9-DXGrA3i9E0J81xAHb1vUUkmrmtJxNKUEyipmeDWrOKBCB45lr8u9Vx7iY4Np0KuwiV1-vublTJaz_JVVpq72lI0hpYju91ZG9RiMHoPRYzCZne7ZL9_i9n9Qz1_mYnfiG-JWkI0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674670008</pqid></control><display><type>article</type><title>Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Karimi, Mohsen ; Khosravi, Marzieh ; Fathollahi, Reza ; Khandakar, Amith ; Vaferi, Behzad</creator><creatorcontrib>Karimi, Mohsen ; Khosravi, Marzieh ; Fathollahi, Reza ; Khandakar, Amith ; Vaferi, Behzad</creatorcontrib><description>Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation. Research highlights Heat capacity of the cellulosic biosamples with different origins is simulated. Seven different intelligent estimators have been utilized for the modeling stage. Least‐squares support vector regression shows the most accurate predictions. This approach has the overall absolute average relative deviation (AARD) = 0.32%, mean square errors (MSE) = 1.88 × 10−3, and R2 = 0.999991. The amorphous cellulosic biosample has the highest average heat capacity.</description><identifier>ISSN: 2050-0505</identifier><identifier>EISSN: 2050-0505</identifier><identifier>DOI: 10.1002/ese3.1155</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Accuracy ; Agricultural production ; Alternative energy ; Artificial intelligence ; Biodiesel fuels ; Biofuels ; Biomass ; Carbon dioxide ; Cellulose ; cellulosic sample ; computational modeling ; Data analysis ; Empirical analysis ; Fossil fuels ; Heat ; heat capacity ; Kernel functions ; least‐squares support vector regression ; Lignin ; Lignocellulose ; Machine learning ; Network topologies ; Neural networks ; Outliers (statistics) ; Specific heat ; Sulfur ; Support vector machines ; Sustainable development ; Thermal properties ; Thermodynamic properties</subject><ispartof>Energy science &amp; engineering, 2022-06, Vol.10 (6), p.1925-1939</ispartof><rights>2022 The Authors. published by the Society of Chemical Industry and John Wiley &amp; Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043</citedby><cites>FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043</cites><orcidid>0000-0003-3218-9824 ; 0000-0001-7068-9112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2674670008/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2674670008?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11542,25732,27903,27904,36991,44569,46030,46454,74872</link.rule.ids></links><search><creatorcontrib>Karimi, Mohsen</creatorcontrib><creatorcontrib>Khosravi, Marzieh</creatorcontrib><creatorcontrib>Fathollahi, Reza</creatorcontrib><creatorcontrib>Khandakar, Amith</creatorcontrib><creatorcontrib>Vaferi, Behzad</creatorcontrib><title>Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches</title><title>Energy science &amp; engineering</title><description>Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation. Research highlights Heat capacity of the cellulosic biosamples with different origins is simulated. Seven different intelligent estimators have been utilized for the modeling stage. Least‐squares support vector regression shows the most accurate predictions. This approach has the overall absolute average relative deviation (AARD) = 0.32%, mean square errors (MSE) = 1.88 × 10−3, and R2 = 0.999991. The amorphous cellulosic biosample has the highest average heat capacity.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Alternative energy</subject><subject>Artificial intelligence</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Cellulose</subject><subject>cellulosic sample</subject><subject>computational modeling</subject><subject>Data analysis</subject><subject>Empirical analysis</subject><subject>Fossil fuels</subject><subject>Heat</subject><subject>heat capacity</subject><subject>Kernel functions</subject><subject>least‐squares support vector regression</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Machine learning</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Outliers (statistics)</subject><subject>Specific heat</subject><subject>Sulfur</subject><subject>Support vector machines</subject><subject>Sustainable development</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><issn>2050-0505</issn><issn>2050-0505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU9LAzEQxRdRUNSD3yDgyUNt_m53j6JVC4IH9Rwm2YlN2W7WZKv025ttRbx4CBPe_PKSySuKC0avGaV8ignFNWNKHRQnnCo6yUsd_tkfF-cprSilTDJZU3ZS-DscMK59B4MPHQmODEskS4SBWOjB-mE7ihbbdtOG5C0xPiRY9y0mgrmEre_eSeM_MSYka7BL3yFpEWI3NqDvY8giprPiyEGb8PynnhZv9_PX28fJ0_PD4vbmaWJFXamJQetKBjUXZU2hMsbWWUHLK6iVQMGpkU3lGJPS1MIIaIyTjVQMa9EIKsVpsdj7NgFWuo9-DXGrA3i9E0J81xAHb1vUUkmrmtJxNKUEyipmeDWrOKBCB45lr8u9Vx7iY4Np0KuwiV1-vublTJaz_JVVpq72lI0hpYju91ZG9RiMHoPRYzCZne7ZL9_i9n9Qz1_mYnfiG-JWkI0</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Karimi, Mohsen</creator><creator>Khosravi, Marzieh</creator><creator>Fathollahi, Reza</creator><creator>Khandakar, Amith</creator><creator>Vaferi, Behzad</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3218-9824</orcidid><orcidid>https://orcid.org/0000-0001-7068-9112</orcidid></search><sort><creationdate>202206</creationdate><title>Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches</title><author>Karimi, Mohsen ; Khosravi, Marzieh ; Fathollahi, Reza ; Khandakar, Amith ; Vaferi, Behzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Alternative energy</topic><topic>Artificial intelligence</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Cellulose</topic><topic>cellulosic sample</topic><topic>computational modeling</topic><topic>Data analysis</topic><topic>Empirical analysis</topic><topic>Fossil fuels</topic><topic>Heat</topic><topic>heat capacity</topic><topic>Kernel functions</topic><topic>least‐squares support vector regression</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Machine learning</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Outliers (statistics)</topic><topic>Specific heat</topic><topic>Sulfur</topic><topic>Support vector machines</topic><topic>Sustainable development</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, Mohsen</creatorcontrib><creatorcontrib>Khosravi, Marzieh</creatorcontrib><creatorcontrib>Fathollahi, Reza</creatorcontrib><creatorcontrib>Khandakar, Amith</creatorcontrib><creatorcontrib>Vaferi, Behzad</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Energy science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimi, Mohsen</au><au>Khosravi, Marzieh</au><au>Fathollahi, Reza</au><au>Khandakar, Amith</au><au>Vaferi, Behzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches</atitle><jtitle>Energy science &amp; engineering</jtitle><date>2022-06</date><risdate>2022</risdate><volume>10</volume><issue>6</issue><spage>1925</spage><epage>1939</epage><pages>1925-1939</pages><issn>2050-0505</issn><eissn>2050-0505</eissn><abstract>Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation. Research highlights Heat capacity of the cellulosic biosamples with different origins is simulated. Seven different intelligent estimators have been utilized for the modeling stage. Least‐squares support vector regression shows the most accurate predictions. This approach has the overall absolute average relative deviation (AARD) = 0.32%, mean square errors (MSE) = 1.88 × 10−3, and R2 = 0.999991. The amorphous cellulosic biosample has the highest average heat capacity.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ese3.1155</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3218-9824</orcidid><orcidid>https://orcid.org/0000-0001-7068-9112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-0505
ispartof Energy science & engineering, 2022-06, Vol.10 (6), p.1925-1939
issn 2050-0505
2050-0505
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_454c5d6f2eb64a0181b28782ae5efaf1
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest)
subjects Accuracy
Agricultural production
Alternative energy
Artificial intelligence
Biodiesel fuels
Biofuels
Biomass
Carbon dioxide
Cellulose
cellulosic sample
computational modeling
Data analysis
Empirical analysis
Fossil fuels
Heat
heat capacity
Kernel functions
least‐squares support vector regression
Lignin
Lignocellulose
Machine learning
Network topologies
Neural networks
Outliers (statistics)
Specific heat
Sulfur
Support vector machines
Sustainable development
Thermal properties
Thermodynamic properties
title Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20heat%20capacity%20of%20cellulosic%20biosamples%20employing%20diverse%20machine%20learning%20approaches&rft.jtitle=Energy%20science%20&%20engineering&rft.au=Karimi,%20Mohsen&rft.date=2022-06&rft.volume=10&rft.issue=6&rft.spage=1925&rft.epage=1939&rft.pages=1925-1939&rft.issn=2050-0505&rft.eissn=2050-0505&rft_id=info:doi/10.1002/ese3.1155&rft_dat=%3Cproquest_doaj_%3E2674670008%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674670008&rft_id=info:pmid/&rfr_iscdi=true