Loading…
Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches
Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificia...
Saved in:
Published in: | Energy science & engineering 2022-06, Vol.10 (6), p.1925-1939 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043 |
---|---|
cites | cdi_FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043 |
container_end_page | 1939 |
container_issue | 6 |
container_start_page | 1925 |
container_title | Energy science & engineering |
container_volume | 10 |
creator | Karimi, Mohsen Khosravi, Marzieh Fathollahi, Reza Khandakar, Amith Vaferi, Behzad |
description | Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation.
Research highlights
Heat capacity of the cellulosic biosamples with different origins is simulated. Seven different intelligent estimators have been utilized for the modeling stage. Least‐squares support vector regression shows the most accurate predictions. This approach has the overall absolute average relative deviation (AARD) = 0.32%, mean square errors (MSE) = 1.88 × 10−3, and R2 = 0.999991. The amorphous cellulosic biosample has the highest average heat capacity. |
doi_str_mv | 10.1002/ese3.1155 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_454c5d6f2eb64a0181b28782ae5efaf1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_454c5d6f2eb64a0181b28782ae5efaf1</doaj_id><sourcerecordid>2674670008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043</originalsourceid><addsrcrecordid>eNp1kU9LAzEQxRdRUNSD3yDgyUNt_m53j6JVC4IH9Rwm2YlN2W7WZKv025ttRbx4CBPe_PKSySuKC0avGaV8ignFNWNKHRQnnCo6yUsd_tkfF-cprSilTDJZU3ZS-DscMK59B4MPHQmODEskS4SBWOjB-mE7ihbbdtOG5C0xPiRY9y0mgrmEre_eSeM_MSYka7BL3yFpEWI3NqDvY8giprPiyEGb8PynnhZv9_PX28fJ0_PD4vbmaWJFXamJQetKBjUXZU2hMsbWWUHLK6iVQMGpkU3lGJPS1MIIaIyTjVQMa9EIKsVpsdj7NgFWuo9-DXGrA3i9E0J81xAHb1vUUkmrmtJxNKUEyipmeDWrOKBCB45lr8u9Vx7iY4Np0KuwiV1-vublTJaz_JVVpq72lI0hpYju91ZG9RiMHoPRYzCZne7ZL9_i9n9Qz1_mYnfiG-JWkI0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674670008</pqid></control><display><type>article</type><title>Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Karimi, Mohsen ; Khosravi, Marzieh ; Fathollahi, Reza ; Khandakar, Amith ; Vaferi, Behzad</creator><creatorcontrib>Karimi, Mohsen ; Khosravi, Marzieh ; Fathollahi, Reza ; Khandakar, Amith ; Vaferi, Behzad</creatorcontrib><description>Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation.
Research highlights
Heat capacity of the cellulosic biosamples with different origins is simulated. Seven different intelligent estimators have been utilized for the modeling stage. Least‐squares support vector regression shows the most accurate predictions. This approach has the overall absolute average relative deviation (AARD) = 0.32%, mean square errors (MSE) = 1.88 × 10−3, and R2 = 0.999991. The amorphous cellulosic biosample has the highest average heat capacity.</description><identifier>ISSN: 2050-0505</identifier><identifier>EISSN: 2050-0505</identifier><identifier>DOI: 10.1002/ese3.1155</identifier><language>eng</language><publisher>London: John Wiley & Sons, Inc</publisher><subject>Accuracy ; Agricultural production ; Alternative energy ; Artificial intelligence ; Biodiesel fuels ; Biofuels ; Biomass ; Carbon dioxide ; Cellulose ; cellulosic sample ; computational modeling ; Data analysis ; Empirical analysis ; Fossil fuels ; Heat ; heat capacity ; Kernel functions ; least‐squares support vector regression ; Lignin ; Lignocellulose ; Machine learning ; Network topologies ; Neural networks ; Outliers (statistics) ; Specific heat ; Sulfur ; Support vector machines ; Sustainable development ; Thermal properties ; Thermodynamic properties</subject><ispartof>Energy science & engineering, 2022-06, Vol.10 (6), p.1925-1939</ispartof><rights>2022 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043</citedby><cites>FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043</cites><orcidid>0000-0003-3218-9824 ; 0000-0001-7068-9112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2674670008/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2674670008?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11542,25732,27903,27904,36991,44569,46030,46454,74872</link.rule.ids></links><search><creatorcontrib>Karimi, Mohsen</creatorcontrib><creatorcontrib>Khosravi, Marzieh</creatorcontrib><creatorcontrib>Fathollahi, Reza</creatorcontrib><creatorcontrib>Khandakar, Amith</creatorcontrib><creatorcontrib>Vaferi, Behzad</creatorcontrib><title>Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches</title><title>Energy science & engineering</title><description>Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation.
Research highlights
Heat capacity of the cellulosic biosamples with different origins is simulated. Seven different intelligent estimators have been utilized for the modeling stage. Least‐squares support vector regression shows the most accurate predictions. This approach has the overall absolute average relative deviation (AARD) = 0.32%, mean square errors (MSE) = 1.88 × 10−3, and R2 = 0.999991. The amorphous cellulosic biosample has the highest average heat capacity.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Alternative energy</subject><subject>Artificial intelligence</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Cellulose</subject><subject>cellulosic sample</subject><subject>computational modeling</subject><subject>Data analysis</subject><subject>Empirical analysis</subject><subject>Fossil fuels</subject><subject>Heat</subject><subject>heat capacity</subject><subject>Kernel functions</subject><subject>least‐squares support vector regression</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Machine learning</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Outliers (statistics)</subject><subject>Specific heat</subject><subject>Sulfur</subject><subject>Support vector machines</subject><subject>Sustainable development</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><issn>2050-0505</issn><issn>2050-0505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU9LAzEQxRdRUNSD3yDgyUNt_m53j6JVC4IH9Rwm2YlN2W7WZKv025ttRbx4CBPe_PKSySuKC0avGaV8ignFNWNKHRQnnCo6yUsd_tkfF-cprSilTDJZU3ZS-DscMK59B4MPHQmODEskS4SBWOjB-mE7ihbbdtOG5C0xPiRY9y0mgrmEre_eSeM_MSYka7BL3yFpEWI3NqDvY8giprPiyEGb8PynnhZv9_PX28fJ0_PD4vbmaWJFXamJQetKBjUXZU2hMsbWWUHLK6iVQMGpkU3lGJPS1MIIaIyTjVQMa9EIKsVpsdj7NgFWuo9-DXGrA3i9E0J81xAHb1vUUkmrmtJxNKUEyipmeDWrOKBCB45lr8u9Vx7iY4Np0KuwiV1-vublTJaz_JVVpq72lI0hpYju91ZG9RiMHoPRYzCZne7ZL9_i9n9Qz1_mYnfiG-JWkI0</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Karimi, Mohsen</creator><creator>Khosravi, Marzieh</creator><creator>Fathollahi, Reza</creator><creator>Khandakar, Amith</creator><creator>Vaferi, Behzad</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3218-9824</orcidid><orcidid>https://orcid.org/0000-0001-7068-9112</orcidid></search><sort><creationdate>202206</creationdate><title>Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches</title><author>Karimi, Mohsen ; Khosravi, Marzieh ; Fathollahi, Reza ; Khandakar, Amith ; Vaferi, Behzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Alternative energy</topic><topic>Artificial intelligence</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Cellulose</topic><topic>cellulosic sample</topic><topic>computational modeling</topic><topic>Data analysis</topic><topic>Empirical analysis</topic><topic>Fossil fuels</topic><topic>Heat</topic><topic>heat capacity</topic><topic>Kernel functions</topic><topic>least‐squares support vector regression</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Machine learning</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Outliers (statistics)</topic><topic>Specific heat</topic><topic>Sulfur</topic><topic>Support vector machines</topic><topic>Sustainable development</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, Mohsen</creatorcontrib><creatorcontrib>Khosravi, Marzieh</creatorcontrib><creatorcontrib>Fathollahi, Reza</creatorcontrib><creatorcontrib>Khandakar, Amith</creatorcontrib><creatorcontrib>Vaferi, Behzad</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Energy science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimi, Mohsen</au><au>Khosravi, Marzieh</au><au>Fathollahi, Reza</au><au>Khandakar, Amith</au><au>Vaferi, Behzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches</atitle><jtitle>Energy science & engineering</jtitle><date>2022-06</date><risdate>2022</risdate><volume>10</volume><issue>6</issue><spage>1925</spage><epage>1939</epage><pages>1925-1939</pages><issn>2050-0505</issn><eissn>2050-0505</eissn><abstract>Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation.
Research highlights
Heat capacity of the cellulosic biosamples with different origins is simulated. Seven different intelligent estimators have been utilized for the modeling stage. Least‐squares support vector regression shows the most accurate predictions. This approach has the overall absolute average relative deviation (AARD) = 0.32%, mean square errors (MSE) = 1.88 × 10−3, and R2 = 0.999991. The amorphous cellulosic biosample has the highest average heat capacity.</abstract><cop>London</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ese3.1155</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3218-9824</orcidid><orcidid>https://orcid.org/0000-0001-7068-9112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-0505 |
ispartof | Energy science & engineering, 2022-06, Vol.10 (6), p.1925-1939 |
issn | 2050-0505 2050-0505 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_454c5d6f2eb64a0181b28782ae5efaf1 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Accuracy Agricultural production Alternative energy Artificial intelligence Biodiesel fuels Biofuels Biomass Carbon dioxide Cellulose cellulosic sample computational modeling Data analysis Empirical analysis Fossil fuels Heat heat capacity Kernel functions least‐squares support vector regression Lignin Lignocellulose Machine learning Network topologies Neural networks Outliers (statistics) Specific heat Sulfur Support vector machines Sustainable development Thermal properties Thermodynamic properties |
title | Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20heat%20capacity%20of%20cellulosic%20biosamples%20employing%20diverse%20machine%20learning%20approaches&rft.jtitle=Energy%20science%20&%20engineering&rft.au=Karimi,%20Mohsen&rft.date=2022-06&rft.volume=10&rft.issue=6&rft.spage=1925&rft.epage=1939&rft.pages=1925-1939&rft.issn=2050-0505&rft.eissn=2050-0505&rft_id=info:doi/10.1002/ese3.1155&rft_dat=%3Cproquest_doaj_%3E2674670008%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3985-becf61a923690a8bbc9ecfec28a953e320b4d8f1144b93b3adbf4d451e93d3043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674670008&rft_id=info:pmid/&rfr_iscdi=true |