Loading…

Multi-agent reinforcement learning for autonomous vehicles: a survey

In the near future, autonomous vehicles (AVs) may cohabit with human drivers in mixed traffic. This cohabitation raises serious challenges, both in terms of traffic flow and individual mobility, as well as from the road safety point of view. Mixed traffic may fail to fulfill expected security requir...

Full description

Saved in:
Bibliographic Details
Published in:Autonomous intelligent systems 2022-11, Vol.2 (1), p.1-12, Article 27
Main Authors: Dinneweth, Joris, Boubezoul, Abderrahmane, Mandiau, René, Espié, Stéphane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378z-e9b1a6e391766500f5a6287183b0bf890ea55799f5b74080c81ca4d60412b1693
cites cdi_FETCH-LOGICAL-c378z-e9b1a6e391766500f5a6287183b0bf890ea55799f5b74080c81ca4d60412b1693
container_end_page 12
container_issue 1
container_start_page 1
container_title Autonomous intelligent systems
container_volume 2
creator Dinneweth, Joris
Boubezoul, Abderrahmane
Mandiau, René
Espié, Stéphane
description In the near future, autonomous vehicles (AVs) may cohabit with human drivers in mixed traffic. This cohabitation raises serious challenges, both in terms of traffic flow and individual mobility, as well as from the road safety point of view. Mixed traffic may fail to fulfill expected security requirements due to the heterogeneity and unpredictability of human drivers, and autonomous cars could then monopolize the traffic. Using multi-agent reinforcement learning (MARL) algorithms, researchers have attempted to design autonomous vehicles for both scenarios, and this paper investigates their recent advances. We focus on articles tackling decision-making problems and identify four paradigms. While some authors address mixed traffic problems with or without social-desirable AVs, others tackle the case of fully-autonomous traffic. While the latter case is essentially a communication problem, most authors addressing the mixed traffic admit some limitations. The current human driver models found in the literature are too simplistic since they do not cover the heterogeneity of the drivers’ behaviors. As a result, they fail to generalize over the wide range of possible behaviors. For each paper investigated, we analyze how the authors formulated the MARL problem in terms of observation, action, and rewards to match the paradigm they apply.
doi_str_mv 10.1007/s43684-022-00045-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4555466927294fd8845023658422666c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4555466927294fd8845023658422666c</doaj_id><sourcerecordid>2736515035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378z-e9b1a6e391766500f5a6287183b0bf890ea55799f5b74080c81ca4d60412b1693</originalsourceid><addsrcrecordid>eNp9kc1LwzAchosoOOb-AU8FTx6qv3wn3sb8hIkXBW8h7dLZ0TUzaQfbX29qxY-LpyQvz-8hyZskpwguEIC4DJRwSTPAOAMAyrL9QTLCgkDGEX89_LU_TiYhrCKEhSJU0lFy_djVbZWZpW3a1NuqKZ0v7Lo_1db4pmqWaYxS07WucWvXhXRr36qituEqNWno_NbuTpKj0tTBTr7WcfJye_M8u8_mT3cPs-k8K4iQ-8yqHBluiUKCcwZQMsOxFEiSHPJSKrCGMaFUyXJBQUIhUWHoggNFOEdckXHyMHgXzqz0xldr43famUp_Bs4vtfFtfzlNGWOUc4UFVrRcSEkZYMKZpBhzzovoOh9cb6b-o7qfznWfAaUMIaW2KLJnA7vx7r2zodUr1_kmPlXHr-UMMSAsUnigCu9C8Lb81iLQfVF6KErHovRnUXofh8gwFCLcLK3_Uf8z9QFFrZJs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736515035</pqid></control><display><type>article</type><title>Multi-agent reinforcement learning for autonomous vehicles: a survey</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Dinneweth, Joris ; Boubezoul, Abderrahmane ; Mandiau, René ; Espié, Stéphane</creator><creatorcontrib>Dinneweth, Joris ; Boubezoul, Abderrahmane ; Mandiau, René ; Espié, Stéphane</creatorcontrib><description>In the near future, autonomous vehicles (AVs) may cohabit with human drivers in mixed traffic. This cohabitation raises serious challenges, both in terms of traffic flow and individual mobility, as well as from the road safety point of view. Mixed traffic may fail to fulfill expected security requirements due to the heterogeneity and unpredictability of human drivers, and autonomous cars could then monopolize the traffic. Using multi-agent reinforcement learning (MARL) algorithms, researchers have attempted to design autonomous vehicles for both scenarios, and this paper investigates their recent advances. We focus on articles tackling decision-making problems and identify four paradigms. While some authors address mixed traffic problems with or without social-desirable AVs, others tackle the case of fully-autonomous traffic. While the latter case is essentially a communication problem, most authors addressing the mixed traffic admit some limitations. The current human driver models found in the literature are too simplistic since they do not cover the heterogeneity of the drivers’ behaviors. As a result, they fail to generalize over the wide range of possible behaviors. For each paper investigated, we analyze how the authors formulated the MARL problem in terms of observation, action, and rewards to match the paradigm they apply.</description><identifier>ISSN: 2730-616X</identifier><identifier>EISSN: 2730-616X</identifier><identifier>DOI: 10.1007/s43684-022-00045-z</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Autonomous cars ; Autonomous Vehicles ; Control and Systems Theory ; Decision making ; Driver behavior ; Engineering ; Engineering Sciences ; Heterogeneity ; Humans and Autonomous Entities in Sustainable Intelligent Transportation Solutions ; Intelligent systems ; Learning ; Machine Learning ; Multi-agent reinforcement learning ; Multiagent systems ; Review ; Robotics and Automation ; Simulation ; Taxonomy ; Traffic flow ; Traffic safety ; Unmanned aerial vehicles</subject><ispartof>Autonomous intelligent systems, 2022-11, Vol.2 (1), p.1-12, Article 27</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378z-e9b1a6e391766500f5a6287183b0bf890ea55799f5b74080c81ca4d60412b1693</citedby><cites>FETCH-LOGICAL-c378z-e9b1a6e391766500f5a6287183b0bf890ea55799f5b74080c81ca4d60412b1693</cites><orcidid>0000-0001-7722-9848 ; 0000-0002-3449-8279 ; 0000-0001-6417-733X ; 0000-0003-3967-1242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2736515035/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2736515035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04451199$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dinneweth, Joris</creatorcontrib><creatorcontrib>Boubezoul, Abderrahmane</creatorcontrib><creatorcontrib>Mandiau, René</creatorcontrib><creatorcontrib>Espié, Stéphane</creatorcontrib><title>Multi-agent reinforcement learning for autonomous vehicles: a survey</title><title>Autonomous intelligent systems</title><addtitle>Auton. Intell. Syst</addtitle><description>In the near future, autonomous vehicles (AVs) may cohabit with human drivers in mixed traffic. This cohabitation raises serious challenges, both in terms of traffic flow and individual mobility, as well as from the road safety point of view. Mixed traffic may fail to fulfill expected security requirements due to the heterogeneity and unpredictability of human drivers, and autonomous cars could then monopolize the traffic. Using multi-agent reinforcement learning (MARL) algorithms, researchers have attempted to design autonomous vehicles for both scenarios, and this paper investigates their recent advances. We focus on articles tackling decision-making problems and identify four paradigms. While some authors address mixed traffic problems with or without social-desirable AVs, others tackle the case of fully-autonomous traffic. While the latter case is essentially a communication problem, most authors addressing the mixed traffic admit some limitations. The current human driver models found in the literature are too simplistic since they do not cover the heterogeneity of the drivers’ behaviors. As a result, they fail to generalize over the wide range of possible behaviors. For each paper investigated, we analyze how the authors formulated the MARL problem in terms of observation, action, and rewards to match the paradigm they apply.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Autonomous cars</subject><subject>Autonomous Vehicles</subject><subject>Control and Systems Theory</subject><subject>Decision making</subject><subject>Driver behavior</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Heterogeneity</subject><subject>Humans and Autonomous Entities in Sustainable Intelligent Transportation Solutions</subject><subject>Intelligent systems</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>Multi-agent reinforcement learning</subject><subject>Multiagent systems</subject><subject>Review</subject><subject>Robotics and Automation</subject><subject>Simulation</subject><subject>Taxonomy</subject><subject>Traffic flow</subject><subject>Traffic safety</subject><subject>Unmanned aerial vehicles</subject><issn>2730-616X</issn><issn>2730-616X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1LwzAchosoOOb-AU8FTx6qv3wn3sb8hIkXBW8h7dLZ0TUzaQfbX29qxY-LpyQvz-8hyZskpwguEIC4DJRwSTPAOAMAyrL9QTLCgkDGEX89_LU_TiYhrCKEhSJU0lFy_djVbZWZpW3a1NuqKZ0v7Lo_1db4pmqWaYxS07WucWvXhXRr36qituEqNWno_NbuTpKj0tTBTr7WcfJye_M8u8_mT3cPs-k8K4iQ-8yqHBluiUKCcwZQMsOxFEiSHPJSKrCGMaFUyXJBQUIhUWHoggNFOEdckXHyMHgXzqz0xldr43famUp_Bs4vtfFtfzlNGWOUc4UFVrRcSEkZYMKZpBhzzovoOh9cb6b-o7qfznWfAaUMIaW2KLJnA7vx7r2zodUr1_kmPlXHr-UMMSAsUnigCu9C8Lb81iLQfVF6KErHovRnUXofh8gwFCLcLK3_Uf8z9QFFrZJs</recordid><startdate>20221116</startdate><enddate>20221116</enddate><creator>Dinneweth, Joris</creator><creator>Boubezoul, Abderrahmane</creator><creator>Mandiau, René</creator><creator>Espié, Stéphane</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7722-9848</orcidid><orcidid>https://orcid.org/0000-0002-3449-8279</orcidid><orcidid>https://orcid.org/0000-0001-6417-733X</orcidid><orcidid>https://orcid.org/0000-0003-3967-1242</orcidid></search><sort><creationdate>20221116</creationdate><title>Multi-agent reinforcement learning for autonomous vehicles: a survey</title><author>Dinneweth, Joris ; Boubezoul, Abderrahmane ; Mandiau, René ; Espié, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378z-e9b1a6e391766500f5a6287183b0bf890ea55799f5b74080c81ca4d60412b1693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Autonomous cars</topic><topic>Autonomous Vehicles</topic><topic>Control and Systems Theory</topic><topic>Decision making</topic><topic>Driver behavior</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Heterogeneity</topic><topic>Humans and Autonomous Entities in Sustainable Intelligent Transportation Solutions</topic><topic>Intelligent systems</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>Multi-agent reinforcement learning</topic><topic>Multiagent systems</topic><topic>Review</topic><topic>Robotics and Automation</topic><topic>Simulation</topic><topic>Taxonomy</topic><topic>Traffic flow</topic><topic>Traffic safety</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinneweth, Joris</creatorcontrib><creatorcontrib>Boubezoul, Abderrahmane</creatorcontrib><creatorcontrib>Mandiau, René</creatorcontrib><creatorcontrib>Espié, Stéphane</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Autonomous intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinneweth, Joris</au><au>Boubezoul, Abderrahmane</au><au>Mandiau, René</au><au>Espié, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-agent reinforcement learning for autonomous vehicles: a survey</atitle><jtitle>Autonomous intelligent systems</jtitle><stitle>Auton. Intell. Syst</stitle><date>2022-11-16</date><risdate>2022</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>27</artnum><issn>2730-616X</issn><eissn>2730-616X</eissn><abstract>In the near future, autonomous vehicles (AVs) may cohabit with human drivers in mixed traffic. This cohabitation raises serious challenges, both in terms of traffic flow and individual mobility, as well as from the road safety point of view. Mixed traffic may fail to fulfill expected security requirements due to the heterogeneity and unpredictability of human drivers, and autonomous cars could then monopolize the traffic. Using multi-agent reinforcement learning (MARL) algorithms, researchers have attempted to design autonomous vehicles for both scenarios, and this paper investigates their recent advances. We focus on articles tackling decision-making problems and identify four paradigms. While some authors address mixed traffic problems with or without social-desirable AVs, others tackle the case of fully-autonomous traffic. While the latter case is essentially a communication problem, most authors addressing the mixed traffic admit some limitations. The current human driver models found in the literature are too simplistic since they do not cover the heterogeneity of the drivers’ behaviors. As a result, they fail to generalize over the wide range of possible behaviors. For each paper investigated, we analyze how the authors formulated the MARL problem in terms of observation, action, and rewards to match the paradigm they apply.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s43684-022-00045-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7722-9848</orcidid><orcidid>https://orcid.org/0000-0002-3449-8279</orcidid><orcidid>https://orcid.org/0000-0001-6417-733X</orcidid><orcidid>https://orcid.org/0000-0003-3967-1242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2730-616X
ispartof Autonomous intelligent systems, 2022-11, Vol.2 (1), p.1-12, Article 27
issn 2730-616X
2730-616X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4555466927294fd8845023658422666c
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Algorithms
Artificial Intelligence
Automation
Autonomous cars
Autonomous Vehicles
Control and Systems Theory
Decision making
Driver behavior
Engineering
Engineering Sciences
Heterogeneity
Humans and Autonomous Entities in Sustainable Intelligent Transportation Solutions
Intelligent systems
Learning
Machine Learning
Multi-agent reinforcement learning
Multiagent systems
Review
Robotics and Automation
Simulation
Taxonomy
Traffic flow
Traffic safety
Unmanned aerial vehicles
title Multi-agent reinforcement learning for autonomous vehicles: a survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-agent%20reinforcement%20learning%20for%20autonomous%20vehicles:%20a%20survey&rft.jtitle=Autonomous%20intelligent%20systems&rft.au=Dinneweth,%20Joris&rft.date=2022-11-16&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=27&rft.issn=2730-616X&rft.eissn=2730-616X&rft_id=info:doi/10.1007/s43684-022-00045-z&rft_dat=%3Cproquest_doaj_%3E2736515035%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378z-e9b1a6e391766500f5a6287183b0bf890ea55799f5b74080c81ca4d60412b1693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736515035&rft_id=info:pmid/&rfr_iscdi=true