Loading…
The Third-Order Nonlinear Optical Properties of Sb2S3/RGO Nanocomposites
Antimony sulfide/reduced graphene oxide (Sb2S3/RGO) nanocomposites were synthesized via a facile, one-step solvothermal method. XRD, SEM, FTIR, and Raman spectroscopy were used to characterize the uniform distribution of Sb2S3 nanoparticles on the surface of graphene through partial chemical bonds....
Saved in:
Published in: | Photonics 2022-03, Vol.9 (4), p.213 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antimony sulfide/reduced graphene oxide (Sb2S3/RGO) nanocomposites were synthesized via a facile, one-step solvothermal method. XRD, SEM, FTIR, and Raman spectroscopy were used to characterize the uniform distribution of Sb2S3 nanoparticles on the surface of graphene through partial chemical bonds. The third-order nonlinear optical (NLO) properties of Sb2S3, RGO, and Sb2S3/RGO samples were investigated by using the Z-scan technique under Nd:YAG picosecond pulsed laser at 532 nm. The results showed that pure Sb2S3 particles exhibited two-photon absorption (TPA), while the Sb2S3/RGO composites switched to variable saturated absorption (SA) properties due to the addition of different concentrations of graphene. Moreover, the third-order nonlinear susceptibilities of the composites were also tunable with the concentration of the graphene. The third-order nonlinear susceptibility of the Sb2S3/RGO sample can achieve 8.63 × 10−12 esu. The mechanism for these properties can be attributed to the change of the band gap and the formation of chemical bonds supplying channels for photo-induced charge transfer between Sb2S3 nanoparticles and the graphene. These tunable NLO properties of Sb2S3/RGO composites can be applicable to photonic devices such as Q-switches, mode-locking devices, and optical switches. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics9040213 |