Loading…
Data pre-processing for analyzing microbiome data – A mini review
The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes...
Saved in:
Published in: | Computational and structural biotechnology journal 2023-01, Vol.21, p.4804-4815 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-2a277d09e83d7a3ee1fd1d8d736b77f847881ef2c9049eadf2aec13d43687f1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-2a277d09e83d7a3ee1fd1d8d736b77f847881ef2c9049eadf2aec13d43687f1b3 |
container_end_page | 4815 |
container_issue | |
container_start_page | 4804 |
container_title | Computational and structural biotechnology journal |
container_volume | 21 |
creator | Zhou, Ruwen Ng, Siu Kin Sung, Joseph Jao Yiu Goh, Wilson Wen Bin Wong, Sunny Hei |
description | The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies. |
doi_str_mv | 10.1016/j.csbj.2023.10.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_455954e4c90b418396db2c5ed9be092e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2001037023003574</els_id><doaj_id>oai_doaj_org_article_455954e4c90b418396db2c5ed9be092e</doaj_id><sourcerecordid>2878019858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-2a277d09e83d7a3ee1fd1d8d736b77f847881ef2c9049eadf2aec13d43687f1b3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhS1U1EEDL9AFyrKbDP5JYltCqtCUlpGQ2LRry7FvBkdJPLUzVNNV34E37JPUYQANG7y59vG5n617EPpE8IJgUl20CxPrdkExZUlYYEyO0AlNJceM4w8H-xk6i7HFaQlSSYY_ohnjoiCM4RO0_KpHnW0C5JvgDcTohnXW-JDpQXe7P9Opdyb42vkeMjuZ__19zK6SOrgswIOD36fouNFdhLPnOkc_v13_WN7kt3ffV8ur29yUlI451ZRziyUIZrlmAKSxxArLWVVz3oiCC0GgoUbiQoK2DdVgCLMFqwRvSM3maLXnWq9btQmu12GnvHbqSfBhrXQYnelAFWUpywKKxKoLIpisbE1NCVbWgCWFxPqyZ222dQ_WwDAG3b2Bvr0Z3L1a-wdFcFnJxE6Ez8-E4H9tIY6qd9FA1-kB_DYqKrjARIpSJCvdW9MgYwzQvL5DsJrSVK2a0lRTmpOWoktN54c_fG15yS4ZLvcGSDNPOQQVjYPBgHUBzJiG4t7j_wfRcbEX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878019858</pqid></control><display><type>article</type><title>Data pre-processing for analyzing microbiome data – A mini review</title><source>ScienceDirect Additional Titles</source><source>PubMed Central</source><creator>Zhou, Ruwen ; Ng, Siu Kin ; Sung, Joseph Jao Yiu ; Goh, Wilson Wen Bin ; Wong, Sunny Hei</creator><creatorcontrib>Zhou, Ruwen ; Ng, Siu Kin ; Sung, Joseph Jao Yiu ; Goh, Wilson Wen Bin ; Wong, Sunny Hei</creatorcontrib><description>The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.</description><identifier>ISSN: 2001-0370</identifier><identifier>EISSN: 2001-0370</identifier><identifier>DOI: 10.1016/j.csbj.2023.10.001</identifier><identifier>PMID: 37841330</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>16S rRNA Sequencing ; Batch Effect ; Data Preprocessing ; Microbiome Data ; Mini-Review ; Normalization</subject><ispartof>Computational and structural biotechnology journal, 2023-01, Vol.21, p.4804-4815</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-2a277d09e83d7a3ee1fd1d8d736b77f847881ef2c9049eadf2aec13d43687f1b3</citedby><cites>FETCH-LOGICAL-c522t-2a277d09e83d7a3ee1fd1d8d736b77f847881ef2c9049eadf2aec13d43687f1b3</cites><orcidid>0000-0002-7299-9509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569954/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2001037023003574$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37841330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ruwen</creatorcontrib><creatorcontrib>Ng, Siu Kin</creatorcontrib><creatorcontrib>Sung, Joseph Jao Yiu</creatorcontrib><creatorcontrib>Goh, Wilson Wen Bin</creatorcontrib><creatorcontrib>Wong, Sunny Hei</creatorcontrib><title>Data pre-processing for analyzing microbiome data – A mini review</title><title>Computational and structural biotechnology journal</title><addtitle>Comput Struct Biotechnol J</addtitle><description>The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.</description><subject>16S rRNA Sequencing</subject><subject>Batch Effect</subject><subject>Data Preprocessing</subject><subject>Microbiome Data</subject><subject>Mini-Review</subject><subject>Normalization</subject><issn>2001-0370</issn><issn>2001-0370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1O3DAUhS1U1EEDL9AFyrKbDP5JYltCqtCUlpGQ2LRry7FvBkdJPLUzVNNV34E37JPUYQANG7y59vG5n617EPpE8IJgUl20CxPrdkExZUlYYEyO0AlNJceM4w8H-xk6i7HFaQlSSYY_ohnjoiCM4RO0_KpHnW0C5JvgDcTohnXW-JDpQXe7P9Opdyb42vkeMjuZ__19zK6SOrgswIOD36fouNFdhLPnOkc_v13_WN7kt3ffV8ur29yUlI451ZRziyUIZrlmAKSxxArLWVVz3oiCC0GgoUbiQoK2DdVgCLMFqwRvSM3maLXnWq9btQmu12GnvHbqSfBhrXQYnelAFWUpywKKxKoLIpisbE1NCVbWgCWFxPqyZ222dQ_WwDAG3b2Bvr0Z3L1a-wdFcFnJxE6Ez8-E4H9tIY6qd9FA1-kB_DYqKrjARIpSJCvdW9MgYwzQvL5DsJrSVK2a0lRTmpOWoktN54c_fG15yS4ZLvcGSDNPOQQVjYPBgHUBzJiG4t7j_wfRcbEX</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhou, Ruwen</creator><creator>Ng, Siu Kin</creator><creator>Sung, Joseph Jao Yiu</creator><creator>Goh, Wilson Wen Bin</creator><creator>Wong, Sunny Hei</creator><general>Elsevier B.V</general><general>Research Network of Computational and Structural Biotechnology</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7299-9509</orcidid></search><sort><creationdate>20230101</creationdate><title>Data pre-processing for analyzing microbiome data – A mini review</title><author>Zhou, Ruwen ; Ng, Siu Kin ; Sung, Joseph Jao Yiu ; Goh, Wilson Wen Bin ; Wong, Sunny Hei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-2a277d09e83d7a3ee1fd1d8d736b77f847881ef2c9049eadf2aec13d43687f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>16S rRNA Sequencing</topic><topic>Batch Effect</topic><topic>Data Preprocessing</topic><topic>Microbiome Data</topic><topic>Mini-Review</topic><topic>Normalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ruwen</creatorcontrib><creatorcontrib>Ng, Siu Kin</creatorcontrib><creatorcontrib>Sung, Joseph Jao Yiu</creatorcontrib><creatorcontrib>Goh, Wilson Wen Bin</creatorcontrib><creatorcontrib>Wong, Sunny Hei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Computational and structural biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ruwen</au><au>Ng, Siu Kin</au><au>Sung, Joseph Jao Yiu</au><au>Goh, Wilson Wen Bin</au><au>Wong, Sunny Hei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data pre-processing for analyzing microbiome data – A mini review</atitle><jtitle>Computational and structural biotechnology journal</jtitle><addtitle>Comput Struct Biotechnol J</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>21</volume><spage>4804</spage><epage>4815</epage><pages>4804-4815</pages><issn>2001-0370</issn><eissn>2001-0370</eissn><abstract>The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37841330</pmid><doi>10.1016/j.csbj.2023.10.001</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7299-9509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2001-0370 |
ispartof | Computational and structural biotechnology journal, 2023-01, Vol.21, p.4804-4815 |
issn | 2001-0370 2001-0370 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_455954e4c90b418396db2c5ed9be092e |
source | ScienceDirect Additional Titles; PubMed Central |
subjects | 16S rRNA Sequencing Batch Effect Data Preprocessing Microbiome Data Mini-Review Normalization |
title | Data pre-processing for analyzing microbiome data – A mini review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20pre-processing%20for%20analyzing%20microbiome%20data%20%E2%80%93%20A%20mini%20review&rft.jtitle=Computational%20and%20structural%20biotechnology%20journal&rft.au=Zhou,%20Ruwen&rft.date=2023-01-01&rft.volume=21&rft.spage=4804&rft.epage=4815&rft.pages=4804-4815&rft.issn=2001-0370&rft.eissn=2001-0370&rft_id=info:doi/10.1016/j.csbj.2023.10.001&rft_dat=%3Cproquest_doaj_%3E2878019858%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-2a277d09e83d7a3ee1fd1d8d736b77f847881ef2c9049eadf2aec13d43687f1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878019858&rft_id=info:pmid/37841330&rfr_iscdi=true |