Loading…
Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels
To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb consti...
Saved in:
Published in: | Shock and vibration 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213 |
---|---|
cites | cdi_FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Shock and vibration |
container_volume | 2021 |
creator | Sui, Chuan-Yi Shen, Yu-Sheng Wen, Yu-Min Gao, Bo |
description | To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data. |
doi_str_mv | 10.1155/2021/9968935 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_455ef7b8048b433c9dd800037f46534c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814639598</galeid><doaj_id>oai_doaj_org_article_455ef7b8048b433c9dd800037f46534c</doaj_id><sourcerecordid>A814639598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213</originalsourceid><addsrcrecordid>eNp9UU1P3DAQjapWKqW99QdE4kgX_B37uFrRgkTbA_TQk-XYY3ZWSbw4iVBv_Q_8Q34J3gZxrOYwo6c3b57mVdVnSs4olfKcEUbPjVHacPmmOqK6kSvDCH9bZtKQlVGMva8-jOOOECK5EkcVrPf7Dr2bMA11ivW0hfp7ChgRQhm2-env4ybNXerb-jdCF-pNxgnygY5DfQM49ujrH3NfMO-6-gb7uXuVu52HAbrxY_Uuum6ETy_9uPr19eJ2c7m6_vntarO-Xnkui1cRDGcCooxMAoutoxoa1RhFDaeU6MgEl4SyVsWWAQkhGEeUZEECd5JRflxdLbohuZ3dZ-xd_mOTQ_sPSPnOujyh78AKKSE2rSZCt4Jzb0LQ5Su8iUJJLnzROlm09jndzzBOdpfmPBT7limiVDEsDxfPFtadK6I4xDRl50sFKH9JA0Qs-FpTobiRRpeFL8uCz2kcM8RXm5TYQ4r2kKJ9SbHQTxf6FofgHvD_7GeNSZrY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606657551</pqid></control><display><type>article</type><title>Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Sui, Chuan-Yi ; Shen, Yu-Sheng ; Wen, Yu-Min ; Gao, Bo</creator><contributor>Lepidi, Marco ; Marco Lepidi</contributor><creatorcontrib>Sui, Chuan-Yi ; Shen, Yu-Sheng ; Wen, Yu-Min ; Gao, Bo ; Lepidi, Marco ; Marco Lepidi</creatorcontrib><description>To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2021/9968935</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algorithms ; Axial forces ; Comparative analysis ; Computer simulation ; Constitutive models ; Earthquakes ; Finite element method ; Mathematical models ; Mechanical properties ; Model testing ; Mohr-Coulomb theory ; Numerical analysis ; Shake table tests ; Simulation ; Simulation methods ; Stress state ; Tensile properties ; Tensile strength ; Tensile stress ; Yield criteria ; Yield stress</subject><ispartof>Shock and vibration, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Chuan-yi Sui et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Chuan-yi Sui et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213</citedby><cites>FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213</cites><orcidid>0000-0002-2365-1282 ; 0000-0002-8605-1815 ; 0000-0002-9456-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2606657551/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2606657551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4023,25752,27922,27923,27924,37011,44589,74997</link.rule.ids></links><search><contributor>Lepidi, Marco</contributor><contributor>Marco Lepidi</contributor><creatorcontrib>Sui, Chuan-Yi</creatorcontrib><creatorcontrib>Shen, Yu-Sheng</creatorcontrib><creatorcontrib>Wen, Yu-Min</creatorcontrib><creatorcontrib>Gao, Bo</creatorcontrib><title>Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels</title><title>Shock and vibration</title><description>To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.</description><subject>Algorithms</subject><subject>Axial forces</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Earthquakes</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Model testing</subject><subject>Mohr-Coulomb theory</subject><subject>Numerical analysis</subject><subject>Shake table tests</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Stress state</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Yield criteria</subject><subject>Yield stress</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1P3DAQjapWKqW99QdE4kgX_B37uFrRgkTbA_TQk-XYY3ZWSbw4iVBv_Q_8Q34J3gZxrOYwo6c3b57mVdVnSs4olfKcEUbPjVHacPmmOqK6kSvDCH9bZtKQlVGMva8-jOOOECK5EkcVrPf7Dr2bMA11ivW0hfp7ChgRQhm2-env4ybNXerb-jdCF-pNxgnygY5DfQM49ujrH3NfMO-6-gb7uXuVu52HAbrxY_Uuum6ETy_9uPr19eJ2c7m6_vntarO-Xnkui1cRDGcCooxMAoutoxoa1RhFDaeU6MgEl4SyVsWWAQkhGEeUZEECd5JRflxdLbohuZ3dZ-xd_mOTQ_sPSPnOujyh78AKKSE2rSZCt4Jzb0LQ5Su8iUJJLnzROlm09jndzzBOdpfmPBT7limiVDEsDxfPFtadK6I4xDRl50sFKH9JA0Qs-FpTobiRRpeFL8uCz2kcM8RXm5TYQ4r2kKJ9SbHQTxf6FofgHvD_7GeNSZrY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sui, Chuan-Yi</creator><creator>Shen, Yu-Sheng</creator><creator>Wen, Yu-Min</creator><creator>Gao, Bo</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2365-1282</orcidid><orcidid>https://orcid.org/0000-0002-8605-1815</orcidid><orcidid>https://orcid.org/0000-0002-9456-9921</orcidid></search><sort><creationdate>2021</creationdate><title>Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels</title><author>Sui, Chuan-Yi ; Shen, Yu-Sheng ; Wen, Yu-Min ; Gao, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Axial forces</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Earthquakes</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Model testing</topic><topic>Mohr-Coulomb theory</topic><topic>Numerical analysis</topic><topic>Shake table tests</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Stress state</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Yield criteria</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sui, Chuan-Yi</creatorcontrib><creatorcontrib>Shen, Yu-Sheng</creatorcontrib><creatorcontrib>Wen, Yu-Min</creatorcontrib><creatorcontrib>Gao, Bo</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sui, Chuan-Yi</au><au>Shen, Yu-Sheng</au><au>Wen, Yu-Min</au><au>Gao, Bo</au><au>Lepidi, Marco</au><au>Marco Lepidi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels</atitle><jtitle>Shock and vibration</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2021/9968935</doi><orcidid>https://orcid.org/0000-0002-2365-1282</orcidid><orcidid>https://orcid.org/0000-0002-8605-1815</orcidid><orcidid>https://orcid.org/0000-0002-9456-9921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9622 |
ispartof | Shock and vibration, 2021, Vol.2021 (1) |
issn | 1070-9622 1875-9203 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_455ef7b8048b433c9dd800037f46534c |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access |
subjects | Algorithms Axial forces Comparative analysis Computer simulation Constitutive models Earthquakes Finite element method Mathematical models Mechanical properties Model testing Mohr-Coulomb theory Numerical analysis Shake table tests Simulation Simulation methods Stress state Tensile properties Tensile strength Tensile stress Yield criteria Yield stress |
title | Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Modified%20Mohr%E2%80%93Coulomb%20Yield%20Criterion%20in%20Seismic%20Numerical%20Simulation%20of%20Tunnels&rft.jtitle=Shock%20and%20vibration&rft.au=Sui,%20Chuan-Yi&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2021/9968935&rft_dat=%3Cgale_doaj_%3EA814639598%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2606657551&rft_id=info:pmid/&rft_galeid=A814639598&rfr_iscdi=true |