Loading…

Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels

To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb consti...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2021, Vol.2021 (1)
Main Authors: Sui, Chuan-Yi, Shen, Yu-Sheng, Wen, Yu-Min, Gao, Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213
cites cdi_FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213
container_end_page
container_issue 1
container_start_page
container_title Shock and vibration
container_volume 2021
creator Sui, Chuan-Yi
Shen, Yu-Sheng
Wen, Yu-Min
Gao, Bo
description To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.
doi_str_mv 10.1155/2021/9968935
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_455ef7b8048b433c9dd800037f46534c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814639598</galeid><doaj_id>oai_doaj_org_article_455ef7b8048b433c9dd800037f46534c</doaj_id><sourcerecordid>A814639598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213</originalsourceid><addsrcrecordid>eNp9UU1P3DAQjapWKqW99QdE4kgX_B37uFrRgkTbA_TQk-XYY3ZWSbw4iVBv_Q_8Q34J3gZxrOYwo6c3b57mVdVnSs4olfKcEUbPjVHacPmmOqK6kSvDCH9bZtKQlVGMva8-jOOOECK5EkcVrPf7Dr2bMA11ivW0hfp7ChgRQhm2-env4ybNXerb-jdCF-pNxgnygY5DfQM49ujrH3NfMO-6-gb7uXuVu52HAbrxY_Uuum6ETy_9uPr19eJ2c7m6_vntarO-Xnkui1cRDGcCooxMAoutoxoa1RhFDaeU6MgEl4SyVsWWAQkhGEeUZEECd5JRflxdLbohuZ3dZ-xd_mOTQ_sPSPnOujyh78AKKSE2rSZCt4Jzb0LQ5Su8iUJJLnzROlm09jndzzBOdpfmPBT7limiVDEsDxfPFtadK6I4xDRl50sFKH9JA0Qs-FpTobiRRpeFL8uCz2kcM8RXm5TYQ4r2kKJ9SbHQTxf6FofgHvD_7GeNSZrY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606657551</pqid></control><display><type>article</type><title>Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Sui, Chuan-Yi ; Shen, Yu-Sheng ; Wen, Yu-Min ; Gao, Bo</creator><contributor>Lepidi, Marco ; Marco Lepidi</contributor><creatorcontrib>Sui, Chuan-Yi ; Shen, Yu-Sheng ; Wen, Yu-Min ; Gao, Bo ; Lepidi, Marco ; Marco Lepidi</creatorcontrib><description>To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2021/9968935</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algorithms ; Axial forces ; Comparative analysis ; Computer simulation ; Constitutive models ; Earthquakes ; Finite element method ; Mathematical models ; Mechanical properties ; Model testing ; Mohr-Coulomb theory ; Numerical analysis ; Shake table tests ; Simulation ; Simulation methods ; Stress state ; Tensile properties ; Tensile strength ; Tensile stress ; Yield criteria ; Yield stress</subject><ispartof>Shock and vibration, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Chuan-yi Sui et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Chuan-yi Sui et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213</citedby><cites>FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213</cites><orcidid>0000-0002-2365-1282 ; 0000-0002-8605-1815 ; 0000-0002-9456-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2606657551/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2606657551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4023,25752,27922,27923,27924,37011,44589,74997</link.rule.ids></links><search><contributor>Lepidi, Marco</contributor><contributor>Marco Lepidi</contributor><creatorcontrib>Sui, Chuan-Yi</creatorcontrib><creatorcontrib>Shen, Yu-Sheng</creatorcontrib><creatorcontrib>Wen, Yu-Min</creatorcontrib><creatorcontrib>Gao, Bo</creatorcontrib><title>Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels</title><title>Shock and vibration</title><description>To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.</description><subject>Algorithms</subject><subject>Axial forces</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Earthquakes</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Model testing</subject><subject>Mohr-Coulomb theory</subject><subject>Numerical analysis</subject><subject>Shake table tests</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Stress state</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Yield criteria</subject><subject>Yield stress</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1P3DAQjapWKqW99QdE4kgX_B37uFrRgkTbA_TQk-XYY3ZWSbw4iVBv_Q_8Q34J3gZxrOYwo6c3b57mVdVnSs4olfKcEUbPjVHacPmmOqK6kSvDCH9bZtKQlVGMva8-jOOOECK5EkcVrPf7Dr2bMA11ivW0hfp7ChgRQhm2-env4ybNXerb-jdCF-pNxgnygY5DfQM49ujrH3NfMO-6-gb7uXuVu52HAbrxY_Uuum6ETy_9uPr19eJ2c7m6_vntarO-Xnkui1cRDGcCooxMAoutoxoa1RhFDaeU6MgEl4SyVsWWAQkhGEeUZEECd5JRflxdLbohuZ3dZ-xd_mOTQ_sPSPnOujyh78AKKSE2rSZCt4Jzb0LQ5Su8iUJJLnzROlm09jndzzBOdpfmPBT7limiVDEsDxfPFtadK6I4xDRl50sFKH9JA0Qs-FpTobiRRpeFL8uCz2kcM8RXm5TYQ4r2kKJ9SbHQTxf6FofgHvD_7GeNSZrY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sui, Chuan-Yi</creator><creator>Shen, Yu-Sheng</creator><creator>Wen, Yu-Min</creator><creator>Gao, Bo</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2365-1282</orcidid><orcidid>https://orcid.org/0000-0002-8605-1815</orcidid><orcidid>https://orcid.org/0000-0002-9456-9921</orcidid></search><sort><creationdate>2021</creationdate><title>Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels</title><author>Sui, Chuan-Yi ; Shen, Yu-Sheng ; Wen, Yu-Min ; Gao, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Axial forces</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Earthquakes</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Model testing</topic><topic>Mohr-Coulomb theory</topic><topic>Numerical analysis</topic><topic>Shake table tests</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Stress state</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Yield criteria</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sui, Chuan-Yi</creatorcontrib><creatorcontrib>Shen, Yu-Sheng</creatorcontrib><creatorcontrib>Wen, Yu-Min</creatorcontrib><creatorcontrib>Gao, Bo</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sui, Chuan-Yi</au><au>Shen, Yu-Sheng</au><au>Wen, Yu-Min</au><au>Gao, Bo</au><au>Lepidi, Marco</au><au>Marco Lepidi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels</atitle><jtitle>Shock and vibration</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2021/9968935</doi><orcidid>https://orcid.org/0000-0002-2365-1282</orcidid><orcidid>https://orcid.org/0000-0002-8605-1815</orcidid><orcidid>https://orcid.org/0000-0002-9456-9921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2021, Vol.2021 (1)
issn 1070-9622
1875-9203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_455ef7b8048b433c9dd800037f46534c
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access
subjects Algorithms
Axial forces
Comparative analysis
Computer simulation
Constitutive models
Earthquakes
Finite element method
Mathematical models
Mechanical properties
Model testing
Mohr-Coulomb theory
Numerical analysis
Shake table tests
Simulation
Simulation methods
Stress state
Tensile properties
Tensile strength
Tensile stress
Yield criteria
Yield stress
title Application of the Modified Mohr–Coulomb Yield Criterion in Seismic Numerical Simulation of Tunnels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Modified%20Mohr%E2%80%93Coulomb%20Yield%20Criterion%20in%20Seismic%20Numerical%20Simulation%20of%20Tunnels&rft.jtitle=Shock%20and%20vibration&rft.au=Sui,%20Chuan-Yi&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2021/9968935&rft_dat=%3Cgale_doaj_%3EA814639598%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3575-4d9324ef5f25e2fba18e767961931108f2435012b6fb2e0ddd9a0652d5e3a5213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2606657551&rft_id=info:pmid/&rft_galeid=A814639598&rfr_iscdi=true