Loading…
Silver-Nanowire-Based Localized-Surface-Plasmon-Assisted Transparent Conducting Electrode for High-Efficiency Light-Emitting Diode
Silver nanowire (Ag NWs) networks with high transparency and low resistivity are widely used as promising candidates for the replacement of indium tin oxide (ITO)-based transparent conducting oxides (TCOs) in light-emitting diodes (LEDs). However, LEDs with Ag NW electrodes are less efficient than t...
Saved in:
Published in: | Applied sciences 2021-08, Vol.11 (16), p.7747 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silver nanowire (Ag NWs) networks with high transparency and low resistivity are widely used as promising candidates for the replacement of indium tin oxide (ITO)-based transparent conducting oxides (TCOs) in light-emitting diodes (LEDs). However, LEDs with Ag NW electrodes are less efficient than those with ITO electrodes because of their low electrical properties, such as high contact resistance and strong absorption in the visible region. In this work, we tried to improve the efficiency of LEDs with transparent conducting electrodes of Ag NWs networks via localized surface plasmons (LSPs) by adopting silver nanoparticles. We studied the effect of the thickness of the p-GaN layer on surface plasmon coupling. When a 45 nm thick p-GaN layer was used, the internal quantum efficiency was improved by LSP coupling between a dipole of QW and Ag NW/NP, and the light extraction was improved because the NPs afforded a leakage mode and acted as scattering centers. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11167747 |