Loading…
Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength
In this study, we present a new method called BathySent to retrieve shallow bathymetry from space that is based on the joint measurement of ocean wave celerity (c) and wavelength (λ). We developed the method to work with Sentinel 2 data, exploiting the time lag between two Sentinel 2 spectral bands,...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-06, Vol.13 (11), p.2149 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-962874a398b102f8b1feac2f16d5634361e36258f8367e3ac73499ab933fed043 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-962874a398b102f8b1feac2f16d5634361e36258f8367e3ac73499ab933fed043 |
container_end_page | |
container_issue | 11 |
container_start_page | 2149 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 13 |
creator | de Michele, Marcello Raucoules, Daniel Idier, Deborah Smai, Farid Foumelis, Michael |
description | In this study, we present a new method called BathySent to retrieve shallow bathymetry from space that is based on the joint measurement of ocean wave celerity (c) and wavelength (λ). We developed the method to work with Sentinel 2 data, exploiting the time lag between two Sentinel 2 spectral bands, acquired quasi-simultaneously, from a single satellite dataset. Our method was based on the linear dispersion law, which related water depth to wave celerity and wavelength: when the water depth was less than about half the dominant wavelength, the wave celerity and wavelength decreased due to decreasing water depth (h) as the waves propagated towards the coast. Instead of using a best weighted (c,λ) fit with the linear dispersion relation to retrieve h, we proposed solving the linear dispersion relation for each (c,λ) pair to find multiple h-values within the same resolution cell. Then, we calculated the weighted averaged h-value for each resolution cell. To improve the precision of the final bathymetric map, we stacked the bathymetry values from N-different datasets acquired from the same study area on different dates. We first tested the algorithm on a set of images representing simulated ocean waves, then we applied it to a real set of Sentinel 2 data obtained of our study area, Gâvres peninsula (France, 47°,67 lat.; −3°35 lon.). A comparison with in situ bathymetry yielded good results from the synthetic images (r2 = 0.9) and promising results with the Sentinel 2 images (r2 = 0.7) in the 0–16 m depth zone. |
doi_str_mv | 10.3390/rs13112149 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4561a1e092e04fa4a51aebb1bb5c440f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4561a1e092e04fa4a51aebb1bb5c440f</doaj_id><sourcerecordid>2539967926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-962874a398b102f8b1feac2f16d5634361e36258f8367e3ac73499ab933fed043</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhleISlSlF36BJU4gBWyP1xsfS9TSoKAeWsTRmt2MEwdnHWwnKP8et0FA5zAzevXq0Xw0zRvBPwAY_jFlAUJIocyL5lzyTk6UNPLlf_2r5jLnDa8BIAxX582P-zWGEH-xT1jWxy2VdGQuxS37ug_F7wKxexqLHykwyeZbXFFmB4-srIl9iX4s7DoXv8Xi48iiY9_xQGxGgZIvR4bj8kkJNK7K-nVz5jBkuvxTL5pvN9cPs9vJ4u7zfHa1mAxg2jIxWk47hWCmveDS1ewIB-mEXrYaFGhBoGU7dVPQHQEOHShjsDcAjpZcwUUzP3GXETd2l-p46WgjevskxLSymIofAlnVaoGCuJHElUOFrUDqe9H37aAUd5X17sSqZ3qGur1a2EeNQ6d0PeZBVO_bk3eX4s895WI3cZ_GuqqVLRijOyN1db0_uYYUc07k_mIFt49_tP_-CL8Bh1aNyQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539967926</pqid></control><display><type>article</type><title>Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength</title><source>Publicly Available Content Database</source><creator>de Michele, Marcello ; Raucoules, Daniel ; Idier, Deborah ; Smai, Farid ; Foumelis, Michael</creator><creatorcontrib>de Michele, Marcello ; Raucoules, Daniel ; Idier, Deborah ; Smai, Farid ; Foumelis, Michael</creatorcontrib><description>In this study, we present a new method called BathySent to retrieve shallow bathymetry from space that is based on the joint measurement of ocean wave celerity (c) and wavelength (λ). We developed the method to work with Sentinel 2 data, exploiting the time lag between two Sentinel 2 spectral bands, acquired quasi-simultaneously, from a single satellite dataset. Our method was based on the linear dispersion law, which related water depth to wave celerity and wavelength: when the water depth was less than about half the dominant wavelength, the wave celerity and wavelength decreased due to decreasing water depth (h) as the waves propagated towards the coast. Instead of using a best weighted (c,λ) fit with the linear dispersion relation to retrieve h, we proposed solving the linear dispersion relation for each (c,λ) pair to find multiple h-values within the same resolution cell. Then, we calculated the weighted averaged h-value for each resolution cell. To improve the precision of the final bathymetric map, we stacked the bathymetry values from N-different datasets acquired from the same study area on different dates. We first tested the algorithm on a set of images representing simulated ocean waves, then we applied it to a real set of Sentinel 2 data obtained of our study area, Gâvres peninsula (France, 47°,67 lat.; −3°35 lon.). A comparison with in situ bathymetry yielded good results from the synthetic images (r2 = 0.9) and promising results with the Sentinel 2 images (r2 = 0.7) in the 0–16 m depth zone.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13112149</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bathymeters ; Bathymetry ; cross correlation ; Datasets ; Earth Sciences ; Methods ; Ocean waves ; Resolution cell ; Satellites ; Sciences of the Universe ; Sensors ; Sentinel 2 ; Spectral bands ; Time lag ; Water depth ; Wave propagation ; Wavelength</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-06, Vol.13 (11), p.2149</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-962874a398b102f8b1feac2f16d5634361e36258f8367e3ac73499ab933fed043</citedby><cites>FETCH-LOGICAL-c395t-962874a398b102f8b1feac2f16d5634361e36258f8367e3ac73499ab933fed043</cites><orcidid>0000-0003-1235-2348 ; 0000-0003-1715-3743 ; 0000-0003-1705-8105 ; 0000-0002-8065-3196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2539967926/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2539967926?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://brgm.hal.science/hal-03746319$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Michele, Marcello</creatorcontrib><creatorcontrib>Raucoules, Daniel</creatorcontrib><creatorcontrib>Idier, Deborah</creatorcontrib><creatorcontrib>Smai, Farid</creatorcontrib><creatorcontrib>Foumelis, Michael</creatorcontrib><title>Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength</title><title>Remote sensing (Basel, Switzerland)</title><description>In this study, we present a new method called BathySent to retrieve shallow bathymetry from space that is based on the joint measurement of ocean wave celerity (c) and wavelength (λ). We developed the method to work with Sentinel 2 data, exploiting the time lag between two Sentinel 2 spectral bands, acquired quasi-simultaneously, from a single satellite dataset. Our method was based on the linear dispersion law, which related water depth to wave celerity and wavelength: when the water depth was less than about half the dominant wavelength, the wave celerity and wavelength decreased due to decreasing water depth (h) as the waves propagated towards the coast. Instead of using a best weighted (c,λ) fit with the linear dispersion relation to retrieve h, we proposed solving the linear dispersion relation for each (c,λ) pair to find multiple h-values within the same resolution cell. Then, we calculated the weighted averaged h-value for each resolution cell. To improve the precision of the final bathymetric map, we stacked the bathymetry values from N-different datasets acquired from the same study area on different dates. We first tested the algorithm on a set of images representing simulated ocean waves, then we applied it to a real set of Sentinel 2 data obtained of our study area, Gâvres peninsula (France, 47°,67 lat.; −3°35 lon.). A comparison with in situ bathymetry yielded good results from the synthetic images (r2 = 0.9) and promising results with the Sentinel 2 images (r2 = 0.7) in the 0–16 m depth zone.</description><subject>Algorithms</subject><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>cross correlation</subject><subject>Datasets</subject><subject>Earth Sciences</subject><subject>Methods</subject><subject>Ocean waves</subject><subject>Resolution cell</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Sensors</subject><subject>Sentinel 2</subject><subject>Spectral bands</subject><subject>Time lag</subject><subject>Water depth</subject><subject>Wave propagation</subject><subject>Wavelength</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1vEzEQhleISlSlF36BJU4gBWyP1xsfS9TSoKAeWsTRmt2MEwdnHWwnKP8et0FA5zAzevXq0Xw0zRvBPwAY_jFlAUJIocyL5lzyTk6UNPLlf_2r5jLnDa8BIAxX582P-zWGEH-xT1jWxy2VdGQuxS37ug_F7wKxexqLHykwyeZbXFFmB4-srIl9iX4s7DoXv8Xi48iiY9_xQGxGgZIvR4bj8kkJNK7K-nVz5jBkuvxTL5pvN9cPs9vJ4u7zfHa1mAxg2jIxWk47hWCmveDS1ewIB-mEXrYaFGhBoGU7dVPQHQEOHShjsDcAjpZcwUUzP3GXETd2l-p46WgjevskxLSymIofAlnVaoGCuJHElUOFrUDqe9H37aAUd5X17sSqZ3qGur1a2EeNQ6d0PeZBVO_bk3eX4s895WI3cZ_GuqqVLRijOyN1db0_uYYUc07k_mIFt49_tP_-CL8Bh1aNyQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>de Michele, Marcello</creator><creator>Raucoules, Daniel</creator><creator>Idier, Deborah</creator><creator>Smai, Farid</creator><creator>Foumelis, Michael</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1235-2348</orcidid><orcidid>https://orcid.org/0000-0003-1715-3743</orcidid><orcidid>https://orcid.org/0000-0003-1705-8105</orcidid><orcidid>https://orcid.org/0000-0002-8065-3196</orcidid></search><sort><creationdate>20210601</creationdate><title>Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength</title><author>de Michele, Marcello ; Raucoules, Daniel ; Idier, Deborah ; Smai, Farid ; Foumelis, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-962874a398b102f8b1feac2f16d5634361e36258f8367e3ac73499ab933fed043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>cross correlation</topic><topic>Datasets</topic><topic>Earth Sciences</topic><topic>Methods</topic><topic>Ocean waves</topic><topic>Resolution cell</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Sensors</topic><topic>Sentinel 2</topic><topic>Spectral bands</topic><topic>Time lag</topic><topic>Water depth</topic><topic>Wave propagation</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Michele, Marcello</creatorcontrib><creatorcontrib>Raucoules, Daniel</creatorcontrib><creatorcontrib>Idier, Deborah</creatorcontrib><creatorcontrib>Smai, Farid</creatorcontrib><creatorcontrib>Foumelis, Michael</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Michele, Marcello</au><au>Raucoules, Daniel</au><au>Idier, Deborah</au><au>Smai, Farid</au><au>Foumelis, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>13</volume><issue>11</issue><spage>2149</spage><pages>2149-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>In this study, we present a new method called BathySent to retrieve shallow bathymetry from space that is based on the joint measurement of ocean wave celerity (c) and wavelength (λ). We developed the method to work with Sentinel 2 data, exploiting the time lag between two Sentinel 2 spectral bands, acquired quasi-simultaneously, from a single satellite dataset. Our method was based on the linear dispersion law, which related water depth to wave celerity and wavelength: when the water depth was less than about half the dominant wavelength, the wave celerity and wavelength decreased due to decreasing water depth (h) as the waves propagated towards the coast. Instead of using a best weighted (c,λ) fit with the linear dispersion relation to retrieve h, we proposed solving the linear dispersion relation for each (c,λ) pair to find multiple h-values within the same resolution cell. Then, we calculated the weighted averaged h-value for each resolution cell. To improve the precision of the final bathymetric map, we stacked the bathymetry values from N-different datasets acquired from the same study area on different dates. We first tested the algorithm on a set of images representing simulated ocean waves, then we applied it to a real set of Sentinel 2 data obtained of our study area, Gâvres peninsula (France, 47°,67 lat.; −3°35 lon.). A comparison with in situ bathymetry yielded good results from the synthetic images (r2 = 0.9) and promising results with the Sentinel 2 images (r2 = 0.7) in the 0–16 m depth zone.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs13112149</doi><orcidid>https://orcid.org/0000-0003-1235-2348</orcidid><orcidid>https://orcid.org/0000-0003-1715-3743</orcidid><orcidid>https://orcid.org/0000-0003-1705-8105</orcidid><orcidid>https://orcid.org/0000-0002-8065-3196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2021-06, Vol.13 (11), p.2149 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4561a1e092e04fa4a51aebb1bb5c440f |
source | Publicly Available Content Database |
subjects | Algorithms Bathymeters Bathymetry cross correlation Datasets Earth Sciences Methods Ocean waves Resolution cell Satellites Sciences of the Universe Sensors Sentinel 2 Spectral bands Time lag Water depth Wave propagation Wavelength |
title | Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shallow%20Bathymetry%20from%20Multiple%20Sentinel%202%20Images%20via%20the%20Joint%20Estimation%20of%20Wave%20Celerity%20and%20Wavelength&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=de%20Michele,%20Marcello&rft.date=2021-06-01&rft.volume=13&rft.issue=11&rft.spage=2149&rft.pages=2149-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13112149&rft_dat=%3Cproquest_doaj_%3E2539967926%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-962874a398b102f8b1feac2f16d5634361e36258f8367e3ac73499ab933fed043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539967926&rft_id=info:pmid/&rfr_iscdi=true |