Loading…

Manufacturing and Testing of a Variable Chord Extension for Helicopter Rotor Blades

Helicopters are still an indispensable addition to aviation in this day and age. They are characterized by their ability to master both forward flight and hover. These characteristics result in a wide range of possible operations. Key for the design of the rotor blades is a blade design that always...

Full description

Saved in:
Bibliographic Details
Published in:Actuators 2022-02, Vol.11 (2), p.53
Main Authors: Balzarek, Christoph, Kalow, Steffen, Riemenschneider, Johannes, Rivero, Andres
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Helicopters are still an indispensable addition to aviation in this day and age. They are characterized by their ability to master both forward flight and hover. These characteristics result in a wide range of possible operations. Key for the design of the rotor blades is a blade design that always represents a compromise between the different flight conditions, which enables safe and efficient flight in the various flight conditions. In order to operate the rotor blade even more efficiently in all flight conditions, a new morphing concept, the so-called linear variable chord extension, has been developed. Here, the blade chord length in the root area is changed with the help of an elastic skin to adapt it to the respective flight condition. The simulations performed for this concept showed a promising increase in overall helicopter performance. The fabrication of the resulting demonstrator as well as the tests in the whirl-tower and wind tunnel are presented in this paper. The results of the tests show that the concept of linear variable chord extension has a positive influence and a great potential for hovering flight.
ISSN:2076-0825
2076-0825
DOI:10.3390/act11020053